Skip to main content

On the Macroscopic Fractal Geometry of Some Random Sets

  • Conference paper
  • First Online:
Stochastic Analysis and Related Topics

Part of the book series: Progress in Probability ((PRPR,volume 72))

Abstract

This paper is concerned mainly with the macroscopic fractal behavior of various random sets that arise in modern and classical probability theory. Among other things, it is shown here that the macroscopic behavior of Boolean coverage processes is analogous to the microscopic structure of the Mandelbrot fractal percolation. Other, more technically challenging, results of this paper include:

  1. (i)

    The computation of the macroscopic Minkowski dimension of the graph of a large family of Lévy processes; and

  2. (ii)

    The determination of the macroscopic monofractality of the extreme values of symmetric stable processes.

As a consequence of (i), it will be shown that the macroscopic fractal dimension of the graph of Brownian motion differs from its microscopic fractal dimension. Thus, there can be no scaling argument that allows one to deduce the macroscopic geometry from the microscopic. Item (ii) extends the recent work of Khoshnevisan et al. (Ann Probab, to appear) on the extreme values of Brownian motion, using a different method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The same argument shows that if X and Y are independent subordinators, then we have the change-of-variables formula,

    $$\displaystyle{\int _{0}^{\infty }\frac{\mathrm{U}_{_{X}}(\mathrm{d}x)} {\Phi _{_{Y }}(x)} =\int _{ 0}^{\infty }\frac{\mathrm{U}_{_{Y }}(\mathrm{d}y)} {\Phi _{_{X}}(y)}.}$$

References

  1. M.T. Barlow, S.J. Taylor, Fractional dimension of sets in discrete spaces. J. Phys. A 22, 2621–2626 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.T. Barlow, S.J. Taylor, Defining fractal subsets of \(\mathbb{Z}^{d}\). Proc. Lond. Math. Soc. 64, 125–152 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bertoin, Lévy Processes (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  4. J. Bertoin, Subordinators: examples and applications, in Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Mathematics, vol. 1717 (Springer, Berlin, 1999), pp. 1–91

    Google Scholar 

  5. S. Bochner, Harmonic Analysis and the Theory of Probability (University of California Press, Berkeley and Los Angeles, 1955)

    MATH  Google Scholar 

  6. K.J. Falconer, Fractal Geometry–Mathematical Foundations and Applications, 2nd edn. (Wiley, New York, 2003)

    Book  MATH  Google Scholar 

  7. P. Hall, Introduction to the Theory of Coverage Processes (Wiley, New York, 1988)

    MATH  Google Scholar 

  8. J. Hawkes, Trees generated by a simple branching process. J. Lond. Math. Soc. (2) 24, 373–384 (1981)

    Google Scholar 

  9. J. Horowitz, The Hausdorff dimension of the sample path of a subordinator. Isr. J. Math. 6, 176–182 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Khintchine, Sur la croissance locale des processus stochastiques homogénes à accroissements indépendants (Russian). Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 3, 487–508 (1939)

    Google Scholar 

  11. D. Khoshnevisan, Y. Xiao, Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33, 841–878 (2005)

    Google Scholar 

  12. D. Khoshnevisan, Y. Xiao, Harmonic analysis of additive Lévy processes. Probab. Theory Relat. Fields 145, 459–515 (2009)

    Google Scholar 

  13. D. Khoshnevisan, Y. Xiao, Y. Zhong, Measuring the range of an additive Lévy process. Ann. Probab. 31 1097–1141 (2003)

    Google Scholar 

  14. D. Khoshnevisan, K. Kim, Y. Xiao, Intermittency and multifractality: a case study via parabolic stochastic PDEs. Ann. Probab. (to appear)

    Google Scholar 

  15. H.P. McKean Jr., Sample functions of stable processes. Ann. Math. 61, 564–579 (1955)

    Google Scholar 

  16. M. Motoo, Proof of the law of the iterated logarithm through diffusion equation. Ann. Inst. Stat. Math. 10(1), 21–28 (1959)

    Google Scholar 

  17. Y. Peres, Intersection equivalence of Brownian paths and certain branching processes. Commun. Math. Phys. 177, 417–434 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Peres, Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré (Physique théorique) 64, 339–347 (1996)

    Google Scholar 

  19. S.C. Port, C.J. Stone, Infinitely divisible processes and their potential theory. I, II. Ann. Inst. Fourier (Grenoble) 21(2), 157–275 (1971); Ann. Inst. Fourier (Grenoble) 21(4), 179–265 (1971)

    Google Scholar 

  20. W.E. Pruitt, The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19, 371–378 (1969)

    Google Scholar 

  21. S.J. Taylor, The measure theory of random fractals. Math. Proc. Camb. Philos. Soc. 100, 383–406 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Xiao, Random fractals and Markov processes, in Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, ed. by M.L. Lapidus, M. van Frankenhuijsen (American Mathematical Society, Providence, 2004), pp. 261–338

    Chapter  Google Scholar 

Download references

Acknowledgements

Research supported in part by the National Science Foundation grant DMS-1307470, DMS-1608575 and DMS-1607089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davar Khoshnevisan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Khoshnevisan, D., Xiao, Y. (2017). On the Macroscopic Fractal Geometry of Some Random Sets. In: Baudoin, F., Peterson, J. (eds) Stochastic Analysis and Related Topics. Progress in Probability, vol 72. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59671-6_9

Download citation

Publish with us

Policies and ethics