Skip to main content

Anisotropic Metallic and Metallic Oxide Nanostructures-Correlation Between Their Shape and Properties

  • Chapter
  • First Online:
Anisotropic and Shape-Selective Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1439 Accesses

Abstract

In this chapter, we highlight recent innovations from our laboratory by featuring uniquely shaped nanostructures and how their morphology and dimension affect their physico-chemical properties and subsequently their applications. We aim to cover a wide range of applications including optical and plasmonic applications, sensing and imaging , catalytic and photocatalytic applications, bio-medical and environmental implications as well as energy related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doering, W.E., and S.M. Nie. 2002. Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement. The Journal of Physical Chemistry B 106: 311–317.

    Article  CAS  Google Scholar 

  2. Fedlheim, D.L., and C.A. Foss. 2001. Metal Nanoparticles: Synthesis, Characterization, and Applications. New York: Marcel Dekker Inc.

    Google Scholar 

  3. Murphy, C.J., T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, and T. Li. 2005. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications (Feature Article; a Top Five ACS article by citations, National Chemistry Week, 2007). The Journal of Physical Chemistry B 109: 13857–13870.

    Article  CAS  Google Scholar 

  4. Murphy, C.J., A.M. Gole, S. Hunyadi Murph, and C.J. Orendorff. 2006. One-Dimensional Colloidal Gold and Silver Nanostructures. Inorganic Chemistry 45 (19): 7544–7554.

    Article  CAS  Google Scholar 

  5. Murphy, C.J., A.M. Gole, S.E. Hunyadi, J.W. Stone, P.N. Sisco, A. Alkilany, B.E. Kinard, and P. Hankins. 2008. Chemical Sensing and Imaging with Metallic Nanorods. Chemical Communications 4 (554–557): 554.

    Google Scholar 

  6. Hunyadi, S.E. 2007. Nanoengineered Materials: Synthesis, Design Functionalization and Chemical Sensing Applications. Columbia: University of South Carolina.

    Google Scholar 

  7. Ruan, C.M., W. Wang, and A.H. Gu. 2006. Surface-Enhanced Raman Scattering for Perchlorate Detection Using Cystamine-Modified Gold Nanoparticles. Analytica Chimica Acta 567: 114–120.

    Article  CAS  Google Scholar 

  8. Vo-Dinh, T., F. Yan., and M.B Wabuyele. 2006. Surface-Enhanced Raman Scattering for Biomedical Diagnostics and Molecular Imaging. In Surface-Enhanced Raman Scattering: Physics and Applications, ed, K. Kneipp, M. Moskovits and H. Kneipp, pp. 409–26. Berlin: Springer.

    Google Scholar 

  9. Cîntǎ Pînzaru, S., I. Pavel, N. Leopold, and W. Kiefer. 2004. Identification and Characterization of Pharmaceuticals Using Raman and Surface-Enhanced Raman Scattering. Journal of Raman Spectroscopy 35 (5): 338–346.

    Article  CAS  Google Scholar 

  10. Kneipp, K., Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld. 1997. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters 78 (9): 1667–1670.

    Article  CAS  Google Scholar 

  11. Song, C., J. Abbell, Y. He, S.E. Hunyadi Murph, Y. Cui, and Y. Zhao. 2012. Gold-Modified Silver Nanorod Arrays: Growth Dynamics and Improved SERS Properties. Journal of Materials Chemistry 22: 1150–1159.

    Article  CAS  Google Scholar 

  12. Hunyadi Murph, S.E., K. Heroux., C. Turick, and D. Thomas. 2012. Metallic and Hybrid Nanostructures: Fundamentals and Applications. In Applications of Nanomaterials (Vol. 4), ed, J.N. Govil. USA: Studium Press LLC.

    Google Scholar 

  13. Valden, M., X. Lai, and D.W. Goodman. 1998. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 281 (5383): 1647–1650.

    Article  CAS  Google Scholar 

  14. Hunyadi Murph, S.E., and C.J. Murphy. 2006. Tunable One-Dimensional Silver-Silica Nanopeapod Architectures. The Journal of Physical Chemistry B 110: 7226–7231.

    Article  CAS  Google Scholar 

  15. Zou, S., and G.C. Schatz. 2005. Silver Nanoparticle Array Structures that Produce Giant Enhancements in Electromagnetic Fields. Chemical Physics Letters 403 (1–3): 62–67.

    Article  CAS  Google Scholar 

  16. Orendorff, C.J., A. Gole, T.K. Sau, and C.J. Murphy. 2005. Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence. Analytical Chemistry 77 (10): 3261–3266.

    Article  CAS  Google Scholar 

  17. Hunyadi Murph, S.E., and C.J. Murphy. 2013. Patchy Silica-Coated Silver Nanowires as SERS Substrates. Journal of Nanoparticle Research 15 (6): 1607.

    Google Scholar 

  18. Orendorff, C.J., L. Gearheart, N.R. Jana, and C.J. Murphy. 2006. Aspect Ratio Dependence on Surface Enhanced Raman Scattering Using Silver and Gold Nanorod Substrates. Physical Chemistry Chemical Physics 8 (1): 165–170.

    Article  CAS  Google Scholar 

  19. Hunyadi, S.E., and C.J. Murphy. 2006. Bimetallic Silver-Gold Nanowires: Fabrication and Use in Surface- Enhanced Raman Scattering. Journal of Materials Chemistry. 16 (Special Issue: Anisotropic Nanoparticles): 3929–35.

    Google Scholar 

  20. Alvarez-Puebla, R.A., E. Arceo, P.J.G. Goulet, J.J. Garrido, and R.F. Aroca. 2005. Role of Nanoparticle Surface Charge in Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry B 109 (9): 3787–3792.

    Article  CAS  Google Scholar 

  21. Nie, S., and S.R. Emory. 1997. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275 (5303): 1102–1106.

    Article  CAS  Google Scholar 

  22. Lascola, R., S. McWhorter, and S.H. Murph. 2010. Advanced Gas Sensors Using SERS-Activated Waveguides. AIP Conference Proceedings 1267 (1): 1095–1096.

    Article  Google Scholar 

  23. Lascola, R.J., C.S. McWhorter, and S.H. Murph. 2015. Surface Enhanced Raman Scattering Spectroscopic Waveguide.U.S. Patent 4/15/2015, serial # 501665408S.

    Google Scholar 

  24. Murphy, C.J., and S.E. Hunyadi. 2006. Europium-Doped Silica Nanotubes: Synthesis and Optical Properties. Materials Research Society Symposium Proceedings 922E: U01–U03.

    Google Scholar 

  25. Malicka, J., I. Gryczynski, and J.R. Lakowicz. 2003. Enhanced Emission of Highly Labeled DNA Oligomers near Silver Metallic Surfaces. Analytical Chemistry 75 (17): 4408–4414.

    Article  CAS  Google Scholar 

  26. Sokolov, K., G. Chumanov, and T.M. Cotton. 1998. Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films. Analytical Chemistry 70 (18): 3898–3905.

    Article  CAS  Google Scholar 

  27. Aslan, K., M. Wu, J.R. Lakowicz, and C.D. Geddes. 2007. Metal Enhanced Fluorescence Solution-based Sensing Platform 2: Fluorescent Core-Shell Ag@SiO2 Nanoballs. Journal of Fluorescence 17 (2): 127–131.

    Article  CAS  Google Scholar 

  28. Aslan, K., M. Wu, J.R. Lakowicz, and C.D. Geddes. 2007. Fluorescent Core—Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. Journal of the American Chemical Society 129 (6): 1524–1525.

    Article  CAS  Google Scholar 

  29. Hunyadi Murph, S.E., S. Jacobs., M. Siegfried., T. Hu., S. Serkiz., and J. Hudson. 2012. Manganese- Doped Gold Nanoparticles as Positive Contrast Agents for Magnetic Resonance Imaging (MRI). Journal of Nanoparticle Research 14: 658–659.

    Google Scholar 

  30. Obare, S.O., R.E. Hollowell, and C.J. Murphy. 2002. Sensing Strategy for Lithium Ion Based on Gold Nanoparticles. Langmuir 18 (26): 10407–10410.

    Article  CAS  Google Scholar 

  31. Mirkin, C.A., R.L. Letsinger, R.C. Mucic, and J.J. Storhoff. 1996. A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 382: 607–609.

    Article  CAS  Google Scholar 

  32. Chang, J.-Y., H. Wu, H. Chen, Y.-C. Ling, and W. Tan. 2005. Oriented Assembly of Au Nanorods Using Biorecognition System. Chemical Communications 8: 1092–1094.

    Article  CAS  Google Scholar 

  33. Sudeep, P.K., S.T.S. Joseph, and K.G. Thomas. 2005. Selective Detection of Cysteine and Glutathione Using Gold Nanorods. Journal of the American Chemical Society 127 (18): 6516–6517.

    Article  CAS  Google Scholar 

  34. Orendorff, C.J., P.L. Hankins, and C.J. Murphy. 2005. pH-Triggered Assembly of Gold Nanorods. Langmuir 21 (5): 2022–2026.

    Article  CAS  Google Scholar 

  35. Bhadra, D., S. Bhadra, S. Jain, and N.K. Jain. 2003. A PEGylated Dendritic Nanoparticulate Carrier of Fluorouracil. International Journal of Pharmaceutics 257 (1–2): 111–124.

    Article  CAS  Google Scholar 

  36. Haes, A.J., and R.P. Van Duyne. 2002. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. Journal of the American Chemical Society 124 (35): 10596–10604.

    Article  CAS  Google Scholar 

  37. McFarland, A.D., and R.P. Van Duyne. 2003. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Letters 3 (8): 1057–1062.

    Article  CAS  Google Scholar 

  38. Huang, X., I.H. El-Sayed, W. Qian, and M.A. El-Sayed. 2006. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society 128 (6): 2115–2120.

    Article  CAS  Google Scholar 

  39. El-Sayed, I.H., X. Huang, and M.A. El-Sayed. 2005. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Letters 5 (5): 829–834.

    Article  CAS  Google Scholar 

  40. El-Sayed, I.H., X. Huang, and M.A. El-Sayed. 2006. Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles. Cancer Letters 239 (1): 129–135.

    Article  CAS  Google Scholar 

  41. Pissuwan, D., S.M. Valenzuela, and M.B. Cortie. 2006. Therapeutic Possibilities of Plasmonically Heated Gold Nanoparticles. Trends in Biotechnology 24 (2): 62–67.

    Article  CAS  Google Scholar 

  42. Hirsch, L.R., R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West. 2003. Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors Under Magnetic Resonance Guidance. Proceedings of the National Academy of Sciences of the United States of America 100: 13549–13554.

    Article  CAS  Google Scholar 

  43. Abadeer, N.S., and C.J. Murphy. 2016. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. The Journal of Physical Chemistry C 120 (9): 4691–4716.

    Article  CAS  Google Scholar 

  44. Day, E.S., J.G. Morton., and J.L. West. 2009. Nanoparticles for Thermal Cancer Therapy. Journal of Biomechanical Engineering 131 (7): 074001-074001-5.

    Google Scholar 

  45. Xiao, Z., Q. Wu, S. Luo, C. Zhang, J. Baur, R. Justice, and T. Liu. 2013. Shape Matters: A Gold Nanoparticle Enabled Shape Memory Polymer Triggered by Laser Irradiation. Particle & Particle Systems Characterization 30 (4): 338–345.

    Article  CAS  Google Scholar 

  46. Black, K.C.L., Y. Wang, H.P. Luehmann, X. Cai, W. Xing, B. Pang, Y. Zhao, C.S. Cutler, L.V. Wang, Y. Liu, and Y. Xia. 2014. Radioactive 198Au-Doped Nanostructures with Different Shapes for In Vivo Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution. ACS Nano 8 (5): 4385–4394.

    Article  CAS  Google Scholar 

  47. Unrine, J.M., O.V. Tsyusko, S.E. Hunyadi, J. Judy, and P.M. Bertsch. 2010. Effects of Particle Size on Chemical Speciation and Bioavalability of Copper to Earthworms. Journal of Environmental Quality 39: 1942–1953.

    Article  CAS  Google Scholar 

  48. Unrine, J.M., S.E. Hunyadi, O.V. Tsyusko, W. Rao, W.A. Shoults-Wilson, and P.M. Bertsch. 2010. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida). Environmental Science and Technology 44 (21): 8308–8313.

    Article  CAS  Google Scholar 

  49. Unrine, J., P. Bertsch., and S. Hunyadi. 2008. Bioavailability, Trophic Transfer, and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments. In Nanoscience and Nanotechnology (pp. 345–66). New Jersey: Wiley.

    Google Scholar 

  50. Hillyer, J.F., and R.M. Albrecht. 2001. Gastrointestinal Persorption and Tissue Distribution of Differently Sized Colloidal Gold Nanoparticles. Journal of Pharmaceutical Sciences 90 (12): 1927–1936.

    Article  CAS  Google Scholar 

  51. Tak, Y.K., S. Pal, P.K. Naoghare, S. Rangasamy, and J.M. Song. 2015. Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter? Scientific Reports 5: 16908.

    Article  CAS  Google Scholar 

  52. Zhang, R., K. Cheng, A.L. Antaris, X. Ma, M. Yang, S. Ramakrishnan, G. Liu, A. Lu, H. Dai, M. Tian, and Z. Cheng. 2016. Hybrid Anisotropic Nanostructures for Dual-Modal Cancer Imaging and Image-Guided Chemo-Thermo Therapies. Biomaterials 103: 265–277.

    Article  CAS  Google Scholar 

  53. Jacobs, S., S. Murph, M. Siegfried, S. Serkiz, and T.C.C. Hu. 2009. Manganese-Gold Nanospheres as Positive Contrast Agents for Magnetic Resonance Imaging (MRI). Proceedings of the International Society for Magnetic Resonance in Medicine 17: 1275.

    Google Scholar 

  54. Hunyadi Murph, S.E., M. Siegfried., S. Jacobs., T. Hu., and S. Serkiz. 2009. Manganese-Doped Gold Nanoparticle as Positive Contrast Agents for MRI. Proceedings of Front Characterization and Control of Magnetic Carriers.

    Google Scholar 

  55. Nagel, E., N. Al-Saadi, and E. Fleck. 2000. Cardiovascular Magnetic Resonance: Myocardial Perfusion. Herz 25 (4): 409–416.

    Article  CAS  Google Scholar 

  56. Geng, Y., P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, and D.E. Discher. 2007. Shape Effects of Filaments Versus Spherical Particles in Flow and Drug Delivery. Nature Nanotechnology 2 (4): 249–255.

    Article  CAS  Google Scholar 

  57. Gratton, S.E.A., P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, and J.M. DeSimone. 2008. The Effect of Particle Design on Cellular Internalization Pathways. Proceedings of the National Academy of Sciences 105 (33): 11613–11618.

    Article  CAS  Google Scholar 

  58. Toy, R., P.M. Peiris, K.B. Ghaghada, and E. Karathanasis. 2013. Shaping Cancer Nanomedicine: The Effect of Particle Shape on the In Vivo Journey of Nanoparticles. Nanomedicine 9 (1): 121–134.

    Article  CAS  Google Scholar 

  59. Karaman, D.S., D. Desai, R. Senthilkumar, E.M. Johansson, N. Råtts, M. Odén, J.E. Eriksson, C. Sahlgren, D.M. Toivola, and J.M. Rosenholm. 2012. Shape Engineering vs Organic Modification of Inorganic Nanoparticles as a Tool for Enhancing Cellular Internalization. Nanoscale Research Letters 7 (1): 358.

    Article  Google Scholar 

  60. Decuzzi, P., B. Godin, T. Tanaka, S.Y. Lee, C. Chiappini, X. Liu, and M. Ferrari. 2010. Size and Shape Effects in the Biodistribution of Intravascularly Injected Particles. Journal of Controlled Release 141 (3): 320–327.

    Article  CAS  Google Scholar 

  61. Shah, S., Y. Liu, W. Hu, and J. Gao. 2011. Modeling Particle Shape-Dependent Dynamics in Nanomedicine. Journal of Nanoscience and Nanotechnology 11: 919–928.

    Article  CAS  Google Scholar 

  62. Agarwal, R., V. Singh, P. Jurney, L. Shi, S.V. Sreenivasan, and K. Roy. 2013. Mammalian Cells Preferentially Internalize Hydrogel Nanodiscs Over Nanorods and Use Shape-Specific Uptake Mechanisms. Proceedings of the National Academy of Sciences 110 (43): 17247–17252.

    Article  CAS  Google Scholar 

  63. Smith, B.R., P. Kempen, D. Bouley, A. Xu, Z. Liu, N. Melosh, H. Dai, R. Sinclair, and S.S. Gambhir. 2012. Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation. Nano Letters 12 (7): 3369–3377.

    Article  CAS  Google Scholar 

  64. Jiang, X., W. Qu., D. Pan., Y. Ren., J.-M. Williford., H. Cui., E. Luijten., and H.-Q. Mao. 2013. Plasmid-Templated Shape Control of Condensed DNA–Block Copolymer Nanoparticles. Advanced Materials 25 (2): 227–32.

    Google Scholar 

  65. Dasgupta, S., T. Auth, and G. Gompper. 2014. Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Letters 14 (2): 687–693.

    Article  CAS  Google Scholar 

  66. Liu, Y., J. Tan, A. Thomas, D. Ou-Yang, and V.R. Muzykantov. 2012. The Shape of Things to Come: Importance of Design in Nanotechnology for Drug Delivery. Therapeutic Delivery 3 (2): 181–194.

    Article  CAS  Google Scholar 

  67. Hunyadi Murph, S.E., S. Serkiz., E. Fox., H. Colon-Mercado., L. Sexton., and M. Siegfried. 2011. Synthesis, Functionalization, Characterization and Application of Controlled Shape Nanoparticles in Energy Production. In Fluorine-Related Nanoscience with Energy Applications, ed, D.J. Nelson, and C.N. Brammer (Vol. 1064).

    Google Scholar 

  68. Murph, S. 2012. Nanotechnology and Fuel Cells. Innovation: America’s Journal of Technology Commercialization.

    Google Scholar 

  69. Narayanan, R., and M.A. El-Sayed. 2003. Effect of Catalytic Activity on the Metallic Nanoparticle Size Distribution: Electron-Transfer Reaction between Fe(CN)6 and Thiosulfate Ions Catalyzed by PVP—Platinum Nanoparticles. The Journal of Physical Chemistry B 107 (45): 12416–12424.

    Article  CAS  Google Scholar 

  70. Hunyadi, S.E., and C.J. Murphy. 2009. Synthesis and Characterization of Silver-Platinum Bimetallic Nanowires and Platinum Nanotubes. Journal of Cluster Science 20: 319–330.

    Article  CAS  Google Scholar 

  71. Baker, L.A., P. Jin, and C.R. Martin. 2005. Biomaterials and Biotechnologies Based on Nanotube Membranes. Critical Reviews in Solid State and Materials Sciences 30 (4): 183–205.

    Article  CAS  Google Scholar 

  72. Liu, Z., B. Zhao, C. Guo, Y. Sun, F. Xu, H. Yang, and Z. Li. 2009. Novel Hybrid Electrocatalyst with Enhanced Performance in Alkaline Media: Hollow Au/Pd Core/Shell Nanostructures with a Raspberry Surface. The Journal of Physical Chemistry C 113 (38): 16766–16771.

    Article  CAS  Google Scholar 

  73. Crooks, R.M., M. Zhao, L. Sun, V. Chechik, and L.K. Yeung. 2001. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Accounts of Chemical Research 34 (3): 181–190.

    Article  CAS  Google Scholar 

  74. El-Sayed, M.A. 2001. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research 34 (4): 257–264.

    Article  CAS  Google Scholar 

  75. Reddington, E., A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E.S. Smotkin, and T.E. Mallouk. 1998. Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts. Science 280 (5370): 1735–1737.

    Article  CAS  Google Scholar 

  76. Roucoux, A., J. Schulz, and H. Patin. 2002. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts? Chemical Reviews 102 (10): 3757–3778.

    Article  CAS  Google Scholar 

  77. Steele, B.C.H., and A. Heinzel. 2001. Materials for Fuel-Cell Technologies. Nature 414 (6861): 345–352.

    Article  CAS  Google Scholar 

  78. Liang, H.P., H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan, and C.L. Bai. 2004. Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. Angewandte Chemie International Edition 43 (12): 1540–1543.

    Article  CAS  Google Scholar 

  79. Bell, A.T. 2003. The Impact of Nanoscience on Heterogeneous Catalysis. Science 299 (5613): 1688–1691.

    Article  CAS  Google Scholar 

  80. Burda, C., X. Chen, R. Narayanan, and M.A. El-Sayed. 2005. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews 105 (4): 1025–1102.

    Article  CAS  Google Scholar 

  81. Mahmoud, M.A., R. Narayanan, and M.A. El-Sayed. 2013. Enhancing Colloidal Metallic Nanocatalysis: Sharp Edges and Corners for Solid Nanoparticles and Cage Effect for Hollow Ones. Accounts of Chemical Research 46 (8): 1795–1805.

    Article  CAS  Google Scholar 

  82. Williams, K.R., and G.T. Burstein. 1997. Low Temperature Fuel Cells: Interactions Between Catalysts and Engineering Design. Catalysis Today 38 (4): 401–410.

    Article  CAS  Google Scholar 

  83. Murph, S. Gold-Manganese Nanoparticles for Targeted Diagnostic and Imaging. http://www.nanowerk.com/spotlight/spotid=41828.php.

  84. Hunyadi Murph, S.E. 2011. One-Dimensional Plasmonic Nano-Photocatalysts: Synthesis, Characterization and Photocatalytic Activity. In Proceedings of SPIE, ed, Y. Tachibana, pp 1–11.

    Google Scholar 

  85. Narayanan, R., and M.A. El-Sayed. 2005. Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B 109 (26): 12663–12676.

    Article  CAS  Google Scholar 

  86. Wu, B., and N. Zheng. 2013. Surface and Interface Control of Noble Metal Nanocrystals for Catalytic and Electrocatalytic Applications. Nano Today 8 (2): 168–197.

    Article  CAS  Google Scholar 

  87. Semagina, N., and L. Kiwi-Minsker. 2009. Recent Advances in the Liquid-Phase Synthesis of Metal Nanostructures with Controlled Shape and Size for Catalysis. Catalysis Reviews 51 (2): 147–217.

    Article  CAS  Google Scholar 

  88. Hunyadi Murph, S.E., C.J. Murphy., H. Colon-Mercado., R. Torres., K. Heroux., E. Fox., L. Thompson., and R. Haasch. 2011. Tuning of Size and Shape of Au-Pt Nanocatalyst for Direct Methanol Fuel Cells. Journal of Nanoparticle Research 13: 6347–6364.

    Google Scholar 

  89. Chuan-Jian, Z., L. Jin, F. Bin, N.W. Bridgid, N.N. Peter, L. Rameshwori, and Y. Jun. 2010. Nanostructured Catalysts in Fuel Cells. Nanotechnology 21 (6): 062001.

    Article  CAS  Google Scholar 

  90. Larsen, G.K., W. Farr, and S.E.H. Murph. 2016. Multifunctional Fe2O3-Au Nanoparticles with Different Shapes: Enhanced Catalysis, Photothermal Effects, and Magnetic Recyclability. Journal of Physical Chemistry C 120 (28): 15162–15172.

    Article  CAS  Google Scholar 

  91. Murph, S.E.H., G.K. Larsen., and R.J. Lascola. 2016. Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating. Journal of Visualized Experiments (108): e53598.

    Google Scholar 

  92. Murph, S.E.H., G.K. Larsen, P. Korinko, K.J. Coopersmith, A.J. Summer, and R. Lewis. 2017. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration. JOM Journal of the Minerals Metals and Materials Society 69 (2): 162–172.

    Article  CAS  Google Scholar 

  93. Kar, M., M. Pauline, K. Sharma, G. Kumaraswamy, and S. Sen Gupta. 2011. Synthesis of Poly-l-glutamic Acid Grafted Silica Nanoparticles and Their Assembly into Macroporous Structures. Langmuir 27 (19): 12124–12133.

    Article  CAS  Google Scholar 

  94. Li, X.q., and W.x. Zhang. 2006. Iron Nanoparticles:  The Core—Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir 22 (10): 4638–42.

    Google Scholar 

  95. Wang, H., Y.F. Yu, Q.W. Chen, and K. Cheng. 2011. Carboxyl-Functionalized Nanoparticles with Magnetic Core and Mesopore Carbon Shell as Adsorbents for the Removal of Heavy Metal Ions From Aqueous Solution. Dalton Transactions 40 (3): 559–563.

    Article  Google Scholar 

  96. Raschke, G., S. Kowarik, T. Franzl, C. Sönnichsen, T.A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger. 2003. Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Letters 3 (7): 935–938.

    Article  CAS  Google Scholar 

  97. Fondeur, F.F., S.E. Murph., K. Taylor-Pashow., and D.T. Hobbs. 2014. Hybrid Ion Exchange-SERS Sensors for Determining Distribution Coefficients. USA: Savannah River Site.

    Google Scholar 

  98. Badr, Y., M.G. Abd El-Wahed, and M.A. Mahmoud. 2008. Photocatalytic Degradation of Methyl Red Dye by Silica Nanoparticles. Journal of Hazardous Materials 154 (1–3): 245–253.

    Article  CAS  Google Scholar 

  99. Yao, K., P. Basnet, H. Sessions, G.K. Larsen, S.E.H. Murph, and Y. Zhao. 2016. Fe2O3–TiO2 core–shell nanorod Arrays for Visible Light Photocatalytic Applications. Catalysis Today 270: 51–58.

    Article  CAS  Google Scholar 

  100. He, Y., P. Basnet, S.E.H. Murph, and Y. Zhao. 2013. Ag Nanoparticle Embedded TiO2 Composite Nanorod Arrays Fabricated by Oblique Angle Deposition: Toward Plasmonic Photocatalysis. ACS Applied Materials & Interfaces 5 (22): 11818–11827.

    Article  CAS  Google Scholar 

  101. Smith, W., and Y. Zhao. 2008. Enhanced Photocatalytic Activity by Aligned WO3/TiO2 Two-Layer Nanorod Arrays. The Journal of Physical Chemistry C 112 (49): 19635–19641.

    Article  CAS  Google Scholar 

  102. Smith, W., and Y.P. Zhao. 2009. Superior Photocatalytic Performance by Vertically Aligned Core–Shell TiO2/WO3 Nanorod Arrays. Catalysis Communications 10 (7): 1117–1121.

    Article  CAS  Google Scholar 

  103. Shand, M., and J.A. Anderson. 2013. Aqueous Phase Photocatalytic Nitrate Destruction Using titania Based Materials: Routes to Enhanced Performance and Prospects for Visible Light Activation. Catalysis Science & Technology 3 (4): 879–899.

    Article  CAS  Google Scholar 

  104. Doudrick, K., T. Yang, K. Hristovski, and P. Westerhoff. 2013. Photocatalytic Nitrate Reduction in Water: Managing the Hole Scavenger and Reaction By-Product Selectivity. Applied Catalysis, B: Environmental 136–137: 40–47.

    Article  CAS  Google Scholar 

  105. S.E. Hunyadi Murph., and G.K. Larsen. 2017. Titania Nanoparticles for Environmental Applications. Journals of Materials Chemistry. (Manuscript in preparation).

    Google Scholar 

  106. Su, J., X. Feng, J.D. Sloppy, L. Guo, and C.A. Grimes. 2011. Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. Nano Letters 11 (1): 203–208.

    Article  CAS  Google Scholar 

  107. Dupont, P.-H., C. Couteau, D.J. Rogers, F.H. Téhérani, and G. Lérondel. 2010. Waveguiding-assisted random lasing in epitaxial ZnO thin film. Applied Physics Letters 97 (26): 261109.

    Article  CAS  Google Scholar 

  108. Kreibig, U., and M. Vollmer. 1995. Optical Properties of Metal Clusters (Vol. 25). Berlin: Springer.

    Google Scholar 

  109. Hou, W., Z. Liu, P. Pavaskar, W.H. Hung, and S.B. Cronin. 2011. Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange Under Visible Light. Journal of Catalysis 277 (2): 149–153.

    Article  CAS  Google Scholar 

  110. Awazu, K., M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe. 2008. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Journal of the American Chemical Society 130 (5): 1676–1680.

    Article  CAS  Google Scholar 

  111. Roy, S.C., O.K. Varghese, M. Paulose, and C.A. Grimes. 2010. Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 4 (3): 1259–1278.

    Article  CAS  Google Scholar 

  112. Lewis, N.S., G. Crabtree., A.J. Nozik., M.R. Wasielewski., P. Alivisatos., H. Kung., J. Tsao, E. Chandler., W. Walukiewicz., M. Spitler., R. Ellingson., R. Overend., J. Mazer., M. Gress., J. Horwitz., C. Ashton., B. Herndon., L. Shapard., and R.M. Nault. 2005. Basic Research Needs for Solar Energy Utilization; DOESC (USDOE Office of Science (SC)): Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, p Medium: ED.

    Google Scholar 

  113. Kamat, P.V. 2007. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C 111 (7): 2834–2860.

    Article  CAS  Google Scholar 

  114. Yan, S., H. Yu, N. Wang, Z. Li, and Z. Zou. 2012. Efficient conversion of CO2 and H2O into hydrocarbon fuel over ZnAl2O4-modified mesoporous ZnGaNO under visible light irradiation. Chemical Communications 48 (7): 1048–1050.

    Article  CAS  Google Scholar 

  115. Li, H., Y. Lei, Y. Huang, Y. Fang, Y. Xu, L. Zhu, and X. Li. 2011. Photocatalytic Reduction of Carbon Dioxide to Methanol by Cu2O/SiC Nanocrystallite Under Visible Light Irradiation. Journal of Natural Gas Chemistry 20 (2): 145–150.

    Article  CAS  Google Scholar 

  116. Halmann, M. 1978. Photoelectrochemical Reduction of Aqueous Carbon Dioxide on p-type Gallium Phosphide in Liquid Junction Solar Cells. Nature 275 (5676): 115–116.

    Article  CAS  Google Scholar 

  117. Varghese, O.K., M. Paulose, T.J. LaTempa, and C.A. Grimes. 2009. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters 9 (2): 731–737.

    Article  CAS  Google Scholar 

  118. Hunyadi Murph, S.E., H. Sessions., Y. Kun., and Y.Zhao. 2014. Nanocomposite Photocatalysts, Conversion of CO2 to Fuel. In American Chemical Society National Meeting (Vol. C1 Chemistry), Denver.

    Google Scholar 

  119. Narayan, T.C., A. Baldi., A.L. Koh., R. Sinclair., and J.A. Dionne. 2016. Reconstructing Solute-Induced Phase Transformations Within Individual Nanocrystals. Nature Materials 15: 768–774.

    Google Scholar 

  120. Huang, X., P.K. Jain, I.H. El-Sayed, and M.A. El-Sayed. 2006. Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles. Photochemistry and Photobiology 82 (2): 412–417.

    Article  CAS  Google Scholar 

  121. Zharov, V.P., K.E. Mercer, E.N. Galitovskaya, and M.S. Smeltzer. 2006. Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles. Biophysical Journal 90 (2): 619–627.

    Article  CAS  Google Scholar 

  122. Singh, M., S.o. Lara., and S. Tlali. 2016. Effects of Size and Shape on the Specific Heat, Melting Entropy and Enthalpy of Nanomaterials. Journal of Taibah University for Science.

    Google Scholar 

  123. Liu, Q., J. Tang, Y. Zhang, A. Martinez, S. Wang, S. He, T.J. White, and I.I. Smalyukh. 2014. Shape-Dependent Dispersion and Alignment of Nonaggregating Plasmonic Gold Nanoparticles in Lyotropic and Thermotropic Liquid Crystals. Physical Review E 89 (5): 052505.

    Article  CAS  Google Scholar 

  124. van der Beek, D., A.V. Petukhov, P. Davidson, J. Ferré, J.P. Jamet, H.H. Wensink, G.J. Vroege, W. Bras, and H.N.W. Lekkerkerker. 2006. Magnetic-Field-Induced Orientational Order in the Isotropic Phase of Hard Colloidal Platelets. Physical Review E 73 (4): 041402.

    Article  CAS  Google Scholar 

  125. Ryan, K.M., A. Mastroianni, K.A. Stancil, H. Liu, and A.P. Alivisatos. 2006. Electric-Field-Assisted Assembly of Perpendicularly Oriented Nanorod Superlattices. Nano Letters 6 (7): 1479–1482.

    Article  CAS  Google Scholar 

  126. Caswell, K.K., J.N. Wilson, U.H.F. Bunz, and C.J. Murphy. 2003. Preferential End-to-End Assembly of Gold Nanorods by Biotin—Streptavidin Connectors. Journal of the American Chemical Society 125 (46): 13914–13915.

    Article  CAS  Google Scholar 

  127. Kwaadgras, B.W., M. Dijkstra., and R.v. Roij. 2012. Communication: Bulkiness Versus Anisotropy: The Optimal Shape of Polarizable Brownian Nanoparticles for Alignment in Electric Fields. The Journal of Chemical Physics 136 (13): 131102.

    Google Scholar 

  128. Maier, S.A., M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, and H.A. Atwater. 2001. Plasmonics—A Route to Nanoscale Optical Devices. Advanced Materials 13 (19): 1501–1505.

    Article  CAS  Google Scholar 

  129. Maier, S.A., P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A.A.G. Requicha. 2003. Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides. Nature Materials 2 (4): 229–232.

    Article  CAS  Google Scholar 

  130. Atwater, H.A., S. Maier, A. Polman, J.A. Dionne, and L. Sweatlock. 2011. The New “p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld. MRS Bulletin 30 (5): 385–389.

    Article  Google Scholar 

  131. Brzobohatý, O., M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek. 2015. Non-Spherical Gold Nanoparticles Trapped in Optical Tweezers: Shape Matters. Optics Express 23 (7): 8179–8189.

    Article  CAS  Google Scholar 

  132. Jain, P.K., S. Eustis, and M.A. El-Sayed. 2006. Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model. The Journal of Physical Chemistry B 110 (37): 18243–18253.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona E. Hunyadi Murph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hunyadi Murph, S.E. (2017). Anisotropic Metallic and Metallic Oxide Nanostructures-Correlation Between Their Shape and Properties. In: Hunyadi Murph, S., Larsen, G., Coopersmith, K. (eds) Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-59662-4_5

Download citation

Publish with us

Policies and ethics