Skip to main content

Nanoscale Materials: Fundamentals and Emergent Properties

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

As material size decreases into the nano size regime, novel properties arise that are different from their molecular and bulk counterparts. Due to the size and shape effects in this regime, a nanoparticle’s morphology has a profound effect on its properties. This chapter addresses the effect of dimensionality on the optical, electronic, chemical , and physical assets of various nanomaterials and how physical and chemical relationships can be exploited to improve their properties. Delving into the nuances of the different sizes, shapes, and compositions gives one an appreciation of the potential that nanomaterials have to improve upon today’s technologies. As scientists learn to fabricate increasingly more complex nanomaterials, new opportunities develop every day. A detailed discussion on the effect of morphology and nanometric dimensions on materials' physico-chemical properties, which lead to novel applications, will be covered in Chapter 5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. https://www.epa.gov/chemical-research/research-nanomaterials.

  2. Masciangioli, T., and W.-X. Zhang. 2003. Peer Reviewed: Environmental Technologies at the Nanoscale. Environmental Science and Technology 37 (5): 102A–108A.

    Article  CAS  Google Scholar 

  3. Mazzola, L. 2003. Commercializing Nanotechnology. Nature Biotechnology 21 (10): 1137.

    Article  CAS  Google Scholar 

  4. Hunyadi, S.E. 2007. Nanoengineered Materials: Synthesis, Design, Functionalization and Chemical Sensing Applications. In Department of Chemistry and Biochemistry, p. 262. Columbia, SC: University of South Carolina.

    Google Scholar 

  5. Hunyadi Murph, S.E., et al. 2012. Metallic and Hybrid Nanostructures: Fundamentals and Applications. In Applications of Nanomaterials, ed. J.N. Govil. USA: Studium Press LLC.

    Google Scholar 

  6. Murphy, C.J., et al. 2005. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications (Feature Article; a Top Five ACS article by citations, National Chemistry Week, 2007). Journal of Physical Chemistry B 109: 13857–13870.

    Article  CAS  Google Scholar 

  7. Murphy, C.J., et al. 2006. One-Dimensional Colloidal Gold and Silver Nanostructures. Inorganic Chemistry 45 (19): 7544–7554.

    Article  CAS  Google Scholar 

  8. Fedlheim, D.L, and C.A. Foss. 2001. In: Metal Nanoparticles: Synthesis, Characterization, and Applications, Edited By D.L. Fedlheim and C.A. Foss. New York: Marcel Dekker Inc.

    Google Scholar 

  9. Murphy, C.J., et al. 2008. Chemical Sensing and Imaging with Metallic Nanorods. Chemical Communications 4 (554–557): 554.

    Google Scholar 

  10. Kuchibhatla, S.V.N.T., et al. 2007. One Dimensional Nanostructured Materials. Progress in Materials Science 52 (5): 699–913.

    Article  CAS  Google Scholar 

  11. Tiwari, J.N., R.N. Tiwari, and K.S. Kim. 2012. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science 57 (4): 724–803.

    Article  CAS  Google Scholar 

  12. Hunyadi Murph, S.E., et al. 2011. Synthesis, Functionalization, Characterization and Application of Controlled Shape Nanoparticles in Energy Production. In Fluorine-Related Nanoscience with Energy Applications, ed. D.J. Nelson, and C.N. Brammer.

    Google Scholar 

  13. Hunyadi Murph, S.E., et al. 2011. Tuning of Size and Shape of Au-Pt Nanocatalyst for Direct Methanol Fuel Cells. Journal of Nanoparticle Research 13 (6347–6364): 6347.

    Google Scholar 

  14. Roduner, E. 2006. Size Matters: Why Nanomaterials are Different. Chemical Society Reviews 35 (7): 583–592.

    Article  CAS  Google Scholar 

  15. Valden, M., X. Lai, and D.W. Goodman. 1998. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 281 (5383): 1647–1650.

    Google Scholar 

  16. Chen, M., and D. Goodman. 2004. The Structure of Catalytically Active Gold on Titania. Science 306 (5694): 252–255.

    Article  CAS  Google Scholar 

  17. Kim, S.-W., et al. 2002. Fabrication of Hollow Palladium Spheres and their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. Journal of the American Chemical Society 124 (26): 7642–7643.

    Article  CAS  Google Scholar 

  18. Wiley, B., S.H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. XIa. 2006. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. The Journal of Physical Chemistry B 110: 15666–15675.

    Article  CAS  Google Scholar 

  19. Meng, M., et al. 2016. Integration of Kinetic Control and Lattice Mismatch to Synthesize Pd@AuCu Core-Shell Planar Tetrapods with Size-Dependent Optical Properties. Nano Letters 16: 3036–3041.

    Article  CAS  Google Scholar 

  20. Wiley, B., et al. 2005. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver. Chemistry A European Journal 11: 454–463.

    Article  CAS  Google Scholar 

  21. Hadar, I., G.B. Hitin, A. Sitt, A. Faust, and U. Banin. 2013. Polarization Porperties of Semiconductor Nanorod Heterostructures: From Single Particles to Ensemble. The Journal of Physical Chemistry Letters 4: 502–507.

    Article  CAS  Google Scholar 

  22. Cui, Y., et al. 2001. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science 293 (5533): 1289–1292.

    Article  CAS  Google Scholar 

  23. Giblin, J., and M. Kuno. 2010. Nanostructure Absorption: A Comparative Study of Nanowire and Colloidal Quantum Dot Absorption Cross Sections. The Journal of Physical Chemistry Letters 1: 3340–3348.

    Article  CAS  Google Scholar 

  24. Halivni, S., A. Sitt, I. Hadar, and U. Banin. 2012. Effect of Nanoparticle Dimensionality on Fluorescence Resonance Energy Transfer in Nanoparticle-Dye Conjugated Systems. ACS Nano 6 (3): 2758–2765.

    Article  CAS  Google Scholar 

  25. Hunyadi Murph, S.E., and C.J. Murphy. 2006. Tunable One-Dimensional Silver-Silica Nanopeapod Architectures. The Journal of Physical Chemistry B 110: 7226–7231.

    Article  Google Scholar 

  26. Zhang, Q., L. Han, H. Jing, D.A. Blom, Y. Lin, H.L. Zin, and H. Wang. 2016. Facet Control of Gold Nanorods. ACS Nano 10 (2): 2960–2974.

    Article  CAS  Google Scholar 

  27. Unrine, J., P. Bertsch, and S.E. Hunyadi. 2008. Bioavailability, Trophic Transfer and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments. In Nanoscience and Nanotechnology: Environmental and Health Impacts, ed. V. Grassian, 343–364. New Jersey: Wiley.

    Google Scholar 

  28. Hunyadi, S.E., and C.J. Murphy. 2006. Bimetallic Silver-Gold Nanowires: Fabrication and Use in Surface- Enhanced Raman Scattering. Journal of Materials Chemistry 16 (Special Issue: Anisotropic Nanoparticles): 3929–3935.

    Google Scholar 

  29. Hunyadi Murph, S.E., and C.J. Murphy. 2013. Patchy Silica-Coated Silver Nanowires as SERS Substrates. Journal of Nanoparticle Research 15 (6): 1607.

    Google Scholar 

  30. Hunyadi Murph, S.E., et al. 2012. Manganese- Doped Gold Nanoparticles as Positive Contrast Agents for Magnetic Resonance Imaging (MRI). Journal of Nanoparticle Research 14: 658–659.

    Google Scholar 

  31. Chen, H., et al. 2008. Shape- and Size- Dependent Refractive Index Sensitivity of Gold Nanoparticles. Langmuir 24: 5233–5237.

    Article  CAS  Google Scholar 

  32. Chen, H., et al. 2009. Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals with the Same Plasmon Resonance Wavelength. The Journal of Physical Chemistry C 113: 17691–17697.

    Article  CAS  Google Scholar 

  33. Tulun, F.R., S. Öztürk, and Z.Z. Öztürk. 2016. The NO2 Sensing Properties of the Sensors Done with Nano-Tetrapods. Acta Physica Polonica A 129: 797–799.

    Article  CAS  Google Scholar 

  34. Gudiksen, M.S., et al. 2002. Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics. Nature 415: 617–620.

    Article  CAS  Google Scholar 

  35. Langhammer, C., I. Zorić, B. Kasemo, and B.M. Clemens. 2007. Hydrogen Storage in Pd Nanodisks Characterized with a Novel Nanoplasmonic Sensing Scheme. Nano Letters 7: 3122–3127.

    Article  CAS  Google Scholar 

  36. Subhramannia, M., and V.K. Pillai. 2008. Shape-Dependent Electrocatalytic Activity of Platinum Nanostructures. Journal of Materials Chemistry 18: 5858–5870.

    Article  CAS  Google Scholar 

  37. Chithrani, B.D., A.A. Ghazani, and W.C.W. Chan. 2006. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters 6: 662–668.

    Article  CAS  Google Scholar 

  38. Huang, X., et al. 2010. The Effect of the Shape of Mesoporous Silica Nanoparticles on Cellular Uptate and Cell Function. Biomaterials 31 (3): 438–448.

    Google Scholar 

  39. Khon, E., K. Lambright, R. Khnayzer, P. Moroz, D. Perera, E. Butaeva, S. Lambright, F. Castellano, and M. Zamkov. 2013. Improving the Catalytic Activity of Semiconductor Nanocrystals through Selective Domain Etching. Nano Letters 13: 2016–2023.

    Article  CAS  Google Scholar 

  40. Sanchez-Gaytan, B.L., et al. 2012. Spiky Gold Nanoshells: Synthesis and Enhanced Scattering Properties. The Journal of Physical Chemistry C 116: 10318–10324.

    Article  CAS  Google Scholar 

  41. Sitt, A., A. Salant, G. Menagen, and U. Banin. 2011. Highly Emissive Nano Rod-in-Rod Heterostructures with Strong Linear Polarization. Nano Letters 11: 2054–2060.

    Article  CAS  Google Scholar 

  42. Ming, T., et al. 2009. Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods. Nano Letters 9: 3896–3903.

    Article  CAS  Google Scholar 

  43. Hu, J., et al. 2001. Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods. Science 292: 2060–2063.

    Article  CAS  Google Scholar 

  44. Near, R.D., S.C. Hayden, R.E. Hunter, D. Thackston, and M. El-Sayed. 2013. Rapid and Efficient Prediction of Optical Extinction Coefficients for Gold Nanospheres and Gold Nanorods. The Journal of Physical Chemistry C 117: 23950–23955.

    Article  CAS  Google Scholar 

  45. Song, C., et al. 2012. Gold-Modified Silver Nanorod Arrays: Growth Dynamics and Improved SERS Properties. Journal of Materials Chemistry 22: 1150–1159.

    Article  CAS  Google Scholar 

  46. Hunyadi Murph, S.E., et al. 2015. A Possible Oriented Attachment Growth Mechanism for Silver Nanowire Formation. Crystal Growth & Design 15: 1968–1974.

    Google Scholar 

  47. Tao, C.G., et al. 2007. Surface Morphology and Step Fluctuations on Silver Nanowires. Surface Science 601: 4939–4943.

    Article  CAS  Google Scholar 

  48. Lucas, M., et al. 2008. Plastic Deformation of Pentagonal Silver Nanowires: Comparison Between AFM Nanoindentation and Atomistic Simulations. Physical Review B 77: 2452014–2454201.

    Google Scholar 

  49. Talapin, D.V., et al. 2007. Seeded Growth of Highly Luminscent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies. Nano Letters 7: 2951–2959.

    Article  CAS  Google Scholar 

  50. Scarabelli, L., et al. 2015. A “Tips and Tricks” Practical Guide to the Synthesis of Gold Nanorods. The Journal of Physical Chemistry Letters 6: 4270–4279.

    Article  CAS  Google Scholar 

  51. Sun, Y., and Y. Xia. 2002. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 298: 2176–2179.

    Article  CAS  Google Scholar 

  52. Manna, L., et al. 2003. Controlled Growth of Tetrapod-Branced Inorganic Nanocrystals. Nature Materials 2: 382–385.

    Article  CAS  Google Scholar 

  53. Lu, X., T.T. Tran, and W. Zhang. 2013. Shape-Selective Effect of Foreign Metal Ions on Growth of Noble Metal Nanocrystals with High-Index Facets. Journal of Chemical Engineering and Process Technology 1: 1009–1016.

    Google Scholar 

  54. Lyu, L., and M.H. Huang. 2011. Investigation of Relative Stability of Different Facets of Ag2O Nanocrystals Through Face-Selective Etching. The Journal of Physical Chemistry C 115 (36): 17768–17773.

    Article  CAS  Google Scholar 

  55. Tachikawa, T., S. Yamashita, and T. Majima. 2011. Evidence for Crystal-Face-Dependent TiO2 Photocatalysis from Single-Molecule Imaging and Kinetic Analysis. Journal of the American Chemical Society 133: 7197–7204.

    Article  CAS  Google Scholar 

  56. Schmidt, E., et al. 2009. Platinum Nanoparticles: The Crucial Role of Crystal Face and Colloid Stabilizer in the Diastereoselective Hydrogenation of Cinchonidine. Chemistry European Journal 16 (7): 2181–2192.

    Article  Google Scholar 

  57. Ikeda, K., S. Suzuki, and K. Uosaki. 2011. Crystal Face Dependent Chemical Effects in Surface-Enhanced Raman Scattering at Atomically Defined Gold Facets. Nano Letters 11: 1716–1722.

    Article  CAS  Google Scholar 

  58. Han, X., et al. 2009. Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed High-Energy 221 Facets and Enhanced Gas-Sensing Properties. Angewandte Chemie International Edition 121 (48): 9344–9347.

    Article  Google Scholar 

  59. Zhang, Q., et al. 2015. Faceted Gold Nanorods: Nanocuboids, Convex Nanocuboids, and Concave Nanocuboids. Nano Letters 15 (6): 4161–4169.

    Article  CAS  Google Scholar 

  60. Lal, S., et al. 2002. Light Interaction between Gold Nanoshells Plasmon Resonance and Planar Optical Waveguides. The Journal of Physical Chemistry B 106: 5609–5612.

    Article  CAS  Google Scholar 

  61. Kamkaew, A., et al. 2016. Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces 8 (40): 26630–26637.

    Article  CAS  Google Scholar 

  62. Son, S.J., X. Bai, and S.B. Lee. 2007. Inorganic Hollow Nanoparticles and Nanotubes in Nanomedicine: Part 2: Imaging, Diagnostic, and Therapeutic Applications. Drug Discovery Today 12: 657–663.

    Article  CAS  Google Scholar 

  63. Ma, X., et al. 2015. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Nano Letters 15: 7043–7050.

    Article  Google Scholar 

  64. Carbone, L., and P.D. Cozzoli. 2010. Colloidal Heterostructured Nanocrystals: Synthesis and Growth Mechanisms. Nano Today 5: 449–493.

    Article  CAS  Google Scholar 

  65. Lyon, J.L., D.A. Fleming, M.B. Stone, P. Schiffer, and M.E. Williams. 2004. Synthesis of Fe oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding. Nano Letters 4 (4): 719–723.

    Article  CAS  Google Scholar 

  66. Ji, T., et al. 2001. Preparation, Characterization, and Application of Au-shell/Polystyrene Beads and Au-shell/Magnetic Beads. Advanced Materials 13 (16): 1253–1256.

    Article  CAS  Google Scholar 

  67. Harpeness, R., and A. Gedanken. 2004. Microwave Synthesis of Core-Shell Gold/Palladium Bimetallic Nanoparticles. Langmuir 20: 3431–3434.

    Article  CAS  Google Scholar 

  68. Kostevsek, N., et al. 2016. The One-Step Synthesis and Surface Functionalization of Dumbbell-Like Gold-Iron Oxide Nanoparticles: A Chitosan-Based Nanotheranostic System. Chemical Communications 52: 378–381.

    Article  CAS  Google Scholar 

  69. Reguera, J., et al. 2016. Synthesis of Janus Plasmonic-Magnetic, Star-Sphere Nanoparticles, and Their Application in SERS Detection. Faraday Discussions 191: 47–59.

    Article  CAS  Google Scholar 

  70. Larsen, G.K., W. Farr, and S.E.H. Murph. 2016. Multifunctional Fe2O3-Au Nanoparticles with Different Shapes: Enhanced Catalysis, Photothermal Effects, and Magnetic Recyclability. The Journal of Physical Chemistry C 120 (28): 15162–15172.

    Article  CAS  Google Scholar 

  71. Hunyadi, S.E., and C.J. Murphy. 2009. Synthesis and Characterization of Silver-Platinum Bimetallic Nanowires and Platinum Nanotubes. Journal of Cluster Science 20: 319–330.

    Article  CAS  Google Scholar 

  72. Kwizera, E.A., et al. 2016. Size- and Shape-Controlled Synthesis and Properties of Magnetic-Plasmonic Core-Shell Nanoparticles. The Journal of Physical Chemistry C 120: 10530–10546.

    Article  CAS  Google Scholar 

  73. Levin, C.S., et al. 2009. Magnetic-Plasmonic Core-Shell Nanoparticles. ACS Nano 3 (6): 1379–1388.

    Article  CAS  Google Scholar 

  74. Liu, R., and A. Sen. 2011. Autonomous Nanomotor Based on Copper-Platinum Segmented Nanobattery. Journal of the American Chemical Society 133: 20064–20067.

    Article  CAS  Google Scholar 

  75. Kagan, D., P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh, G. Flechsig, and J. Wang. 2009. Chemical Sensing Based on Catalytic Nanomotors: Motion-Based Detection of Trace Silver. Journal of the American Chemical Society 131: 12082–12083.

    Article  CAS  Google Scholar 

  76. Zhang, S., et al. 2011. Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased Sensitivity Localized Surface Plasmon Resonance Sensors Revealed. Nano Letters 11: 1657–1663.

    Article  CAS  Google Scholar 

  77. Clavijo-Chaparro, S.L., et al. 2016. Water Splitting Behavior of Copper-Cerium Oxide Nanorods and Nanocubes Using Hydrazine as a Scavenging Agent. Journal of Molecular Catalysis A: Chemical 423: 143–150.

    Article  CAS  Google Scholar 

  78. Patolsky, F., et al. 2006. Detection, Stimulation and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays. Science 313: 1100–1104.

    Article  CAS  Google Scholar 

  79. Day, J.K., et al. 2014. Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters 15: 1324–1330.

    Article  Google Scholar 

  80. LaPierre, R.R., et al. 2013. III-V Nanowire Photovoltaics: Review of Design for High Efficiency. Rapid Research Letters 7 (10): 815–830.

    Google Scholar 

  81. Huang, M.H., et al. 2001. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292 (5523): 1897–1899.

    Article  CAS  Google Scholar 

  82. Kind, M., et al. 2002. Nanowire Ultraviolet Photodetectors and Optical Switches. Advanced Materials 14 (2): 158–160.

    Article  CAS  Google Scholar 

  83. Krishnan, R., M. Hahn, Z. Yu, J. Silcox, P. Fauchet, and T. Krauss. 2004. Polarization Surface-Charge Density of Single Semiconductor Quantum Rods. Physical Review Letters 92 (21): 216803.

    Article  Google Scholar 

  84. Kozák, O., M. Sudolská, G. Pramanik, P. Cígler, M. Otyepka, and R. Zbořil. 2016. Photoluminescent Carbon Nanostructures. Chemistry of Materials 28: 4085–4128.

    Article  Google Scholar 

  85. Wu, B., A. Heidelberg, and J.J. Boland. 2005. Mechanical Properties of Ultrahigh-Strength Gold Nanowires. Nature Materials 4: 525–529.

    Article  CAS  Google Scholar 

  86. McLellan, J.M., et al. 2007. The SERS ACTIVIty of a Supported Ag Nanocube Strongly Depends on its Orientation Relative to Laser Light. Nano Letters 7 (4): 1013–1017.

    Article  CAS  Google Scholar 

  87. Lee, Y.H., et al. 2011. Refractive Index Sensitivities of Nobel Metal Nanocrystals: The Effects of Multipolar Plasmon Resonances and the Metal Type. Journal of Physical Chemistry C 115 (16): 7997–8004.

    Article  CAS  Google Scholar 

  88. Li, W., et al. 2013. Metal Ions to Control the Morphology of Semiconductor Nanoparticles: Copper Selenide Nanocubes. Journal of the American Chemical Society 135: 4664–4667.

    Article  CAS  Google Scholar 

  89. González-Prior, J., et al. 2016. Oxidation of 1,2-dichloroethane Over Nanocube-Shaped Co3O4 Catalysts. Applied Catalysis, B: Environmental 199: 384–393.

    Article  Google Scholar 

  90. Watson, A.M., X. Zhang., R. Alcaraz de la Osa., J.M. Sanz., F. González., F. Moreno., G. Finkelstein., J. Liu., and H.O. Everitt. 2015. Rhodium Nanoparticles for Ultraviolet Plasmonics. Nano Letters 15: 1095–1100.

    Google Scholar 

  91. Biacchi, A.J., and R.E. Schaak. 2011. The Solvent Matters: Kinetic versus Thermodynamic Shape Control in the Polyol Synthesis of Rhodium Nanoparticles. ACS Nano 5: 8089–8099.

    Article  CAS  Google Scholar 

  92. Hao, F., et al. 2007. Plasmon Resonances of a Gold Nanostar. Nano Letters 7 (3): 729–732.

    Article  CAS  Google Scholar 

  93. Lascola, R.J., C.S. McWhorter., and S.H. Murph. 2015. Surface enhanced Raman scattering spectroscopic waveguide. USPTO, Savannah River Nuclear Solutions, Llc, Aiken.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona E. Hunyadi Murph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hunyadi Murph, S.E., Coopersmith, K.J., Larsen, G.K. (2017). Nanoscale Materials: Fundamentals and Emergent Properties. In: Hunyadi Murph, S., Larsen, G., Coopersmith, K. (eds) Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-59662-4_2

Download citation

Publish with us

Policies and ethics