Skip to main content

Review of Basic Principles

  • Chapter
  • First Online:
Trajectory Analysis in Health Care
  • 710 Accesses

Abstract

We describe eight basic principles of Trajectory Analysis that are applicable to health care: continuous change, multiple variables, action and non-action causes and effects, systems resiliency, the Lyapunov exponent as a measure of change, Type 0 phase shifts to generate change, energy potentials and health, and poor health as chaos. The science of nonlinear and trajectory dynamics is growing rapidly, although it remains mostly theoretical. Cardiology and neuroscience have introduced these concepts to improve human health. Our next steps are to expand this science into health care to support current statistical and epidemiological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PRC:

Phase response curve

SETI:

Search for extraterrestrial intelligence

References

  • Bash, F. (1986). Present, past and future velocity of nearby stars: The path of the sun in 108 years. In R. Smoluchowski, J. N. Bahcall, & M. S. Matthews (Eds.), The galaxy and the solar system. Tucson: University of Arizona Press.

    Google Scholar 

  • Brenchley, P. J., & Harper, D. A. T. (1998). Palaeoecology: Ecosystems, environments and evolution. London: Chapman & Hall.

    Google Scholar 

  • Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual Review of Neuroscience, 35, 203–225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Courbage, M. (1983). Intrinsic irreversibility of Kolmogorov dynamical systems. Physica, 122A, 459–482.

    Article  Google Scholar 

  • Cvitanovic, P., Artuso, R., Dahlqvist, P., Mainieri, R., Tanner, G., Vattay, G., et al. (2004). Chaos: Classical and quantum, version 14.4.1 (April 21, 2013). Accessed 01 Feb 2015 at ChaosBook.org.

    Google Scholar 

  • Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.

    Book  Google Scholar 

  • Davies, P., Demetrius, L. A., & Tuszynski, J. A. (2012). Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression. AIP Advances, 2, 011101. http://dx.doi.org/10.1063/1.3697850.

  • Dresden, M., & Wong, D. (1975). Life games and statistical models. Proceedings of the National Academy of Sciences USA, 72(3), 956–960.

    Article  CAS  Google Scholar 

  • Eigen, M., & Schuster, P. (1979). The hypercycle: A principle of natural self organization. Berlin: Springer Verlag.

    Book  Google Scholar 

  • Erwin, D. H. (2008). Extinction: How life on earth nearly ended 250 million years ago. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Frisch, P. C. (1993). G-star astropauses: A test for interstellar pressure. The Astrophysical Journal, 407, 198–206.

    Article  Google Scholar 

  • Glass, L., & Mackey, M. C. (1988). From clocks to chaos: The rhythms of life. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115, 513–583.

    Article  Google Scholar 

  • Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Hayflick, L. (2007). Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genetics, 3(12), 2351–2354.

    Article  CAS  Google Scholar 

  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A neoproterozoic snowball earth. Science, 281, 1342–1346.

    Article  CAS  PubMed  Google Scholar 

  • Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review, 93(5), 1449–1475.

    Article  Google Scholar 

  • Lightman, A., & Gingerich, O. (1991). When do anomalies begin? Science, 255, 690–695.

    Article  Google Scholar 

  • Maynard Smith, J., & Szathmary, E. (1999). The origins of life: From the birth of life to the origin of language. New York: Oxford University Press.

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1981). Symmetry breaking and pattern selection in far-from-equilibrium systems. Proceedings of the National Academy of Sciences USA, 78(2), 659–663.

    Article  CAS  Google Scholar 

  • Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64(11), 1196–1199.

    Article  CAS  PubMed  Google Scholar 

  • Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821–824.

    Article  CAS  PubMed  Google Scholar 

  • Riklefs, R. E., & Finch, C. E. (1995). Aging: A natural history. New York: Scientific American Library, WH Freeman & Co..

    Google Scholar 

  • Rolfs, C. E., & Rodney, W. S. (1988). Cauldrons in the cosmos: Nuclear astrophysics. Chicago: University of Chicago Press.

    Google Scholar 

  • Seielstad, G. A. (1989). At the heart of the web: The inevitable genesis of intelligent life. Boston: Harcourt Brace Jovanovich.

    Google Scholar 

  • Thom, R. (1972). Structural stability and morphogenesis: An outline of a general theory of models. New York: W.A. Benjamin/Westview.

    Google Scholar 

  • Thom, R. (1977). Structural stability, catastrophe theory, and applied mathematics: The John von Neumann lecture, 1976. SIAM Review, 19(2), 189–201.

    Article  Google Scholar 

  • van Dokkum, P. G., & Conroy, C. (2010). A substantial population of low-mass stars in luminous elliptical galaxies. Nature, 468, 940–942.

    Article  PubMed  Google Scholar 

  • Vattay, G., Kauffman, S., & Niiranen, S. (2014). Quantum biology on the edge of quantus chaos. PloS One, 9(3), e89017. doi:10.1371/journal.pone.0089017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vernadsky, V. I. (1997). The biosphere (trans: Langmuir, D.). M. McMenamin (Ed.), New York: Nevraumont/Copernicus.

    Google Scholar 

  • Wilson, E. O. (1975). Sociobiology: The new synthesis. Cambridge, MA: Harvard/Belknap.

    Google Scholar 

  • Wilson, E. O. (1998). Consilience: The unity of knowledge. New York: Alfred A. Knopf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hollar, D.W. (2018). Review of Basic Principles. In: Trajectory Analysis in Health Care. Springer, Cham. https://doi.org/10.1007/978-3-319-59626-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59626-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59625-9

  • Online ISBN: 978-3-319-59626-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics