Skip to main content

Computed Tomography Imaging for Mitral Valve Regurgitation

  • Chapter
  • First Online:
Percutaneous Treatment of Left Side Cardiac Valves

Abstract

The clinical utility of coronary computed tomography angiography for the evaluation of coronary artery disease is well established in routine cardiology practice. Advances in multidetector computed tomography (MDCT) technology over the past decade have seen dramatic improvements in both spatial and temporal resolution, which has permitted acquisition of high-quality images despite the challenges presented by cardiac motion. Above and beyond allowing for the comprehensive assessment of the epicardial coronary vessels, cardiac chamber contrast opacification with new-generation MDCT scanners also enables accurate and detailed segmentation of the left-sided cardiac valves. Traditional two-dimensional (2D) echocardiography has long been the reference standard for the diagnosis and evaluation of valvular pathology; however, transthoracic echocardiography (TTE) is operator dependent and can be limited in patients with poor acoustic windows, and transesophageal echocardiography (TEE) is invasive. Both approaches limit acquisition to a restricted number of planes/projections, which cannot be subsequently manipulated. In contrast, three-dimensional (3D) imaging techniques such as MDCT permit rapid acquisition of volumetric datasets with unlimited 2D planar reconstruction post-processing capability. This recent development in MDCT technology has fortunately paralleled the rapid expansion of percutaneous valvular repair strategies for patients with symptomatic severe valvular heart disease who are deemed inoperable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.

    Article  PubMed  Google Scholar 

  2. Iung B, Baron G, Butchart EG, Delahaye F, GohlkeBärwolf C, Levang OW, Tornos P, Vanoverschelde JL, Vermeer F, Boersma E, Ravaud P, Vahanian A. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003;24:1231–43.

    Article  PubMed  Google Scholar 

  3. Mehta RH, Eagle KA, Coombs LP, Peterson ED, Edwards FH, Pagani FD, Deeb GM, Bolling SF, Prager RL, Society of Thoracic Surgeons National Cardiac Registry. Influence of age on outcomes in patients undergoing mitral valve replacement. Ann Thorac Surg. 2002;74:1459–67.

    Article  PubMed  Google Scholar 

  4. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM 3rd, Thomas JD, ACC/AHA Task Force Members. 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:e521–643.

    Article  PubMed  Google Scholar 

  5. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.

    Article  CAS  PubMed  Google Scholar 

  6. Acker MA, Parides MK, Perrault LP, Moskowitz AJ, Gelijns AC, Voisine P, et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med. 2014;370:23–32.

    Article  CAS  PubMed  Google Scholar 

  7. Feldman T, Young A. Percutaneous approaches to valve repair for mitral regurgitation. J Am Coll Cardiol. 2014;63:2057–68.

    Article  PubMed  Google Scholar 

  8. Herrmann HC, Maisano F. Transcatheter therapy of mitral regurgitation. Circulation. 2014;130:1712–22.

    Article  PubMed  Google Scholar 

  9. Moat N, Duncan A, Lindsay AC, et al. Transcatheter mitral valve implantation for the treatment of mitral regurgitation: in hospital outcomes of first-in-man experience with an apically tethered device. J Am Coll Cardiol. 2015;2;65(21):2352–3. doi: 10.1016/j.jacc.2015.01.066.

  10. Cheung A, Webb J, Verheye S, et al. Short-term results of transapical transcatheter mitral valve implantation for mitral regurgitation. J Am Coll Cardiol. 2014;64:1814–9.

    Article  PubMed  Google Scholar 

  11. Bapat V, Buellesfeld L, Peterson MD, et al. Transcatheter mitral valve implantation (TMVI) using the Edwards FORTIS device. EuroIntervention. 2014;10 Suppl U:U120–8.

    Google Scholar 

  12. Sondergaard L, Brooks M, Ihlemann N, et al. Transcatheter mitral valve implantation via transapical approach: an early experience. Eur J Cardiothorac Surg. 2015;48(6):873–7.

    Article  PubMed  Google Scholar 

  13. Schoenhagen P, Numburi U, Halliburton SS. Three-dimensional imaging in the context of minimally invasive and transcatheter cardiovascular interventions using multi-detector computed tomography: from pre-operative planning to intra-operative guidance. Eur Heart J. 2010;31:2727–40.

    Article  PubMed  Google Scholar 

  14. Blanke P, Naoum C, Webb J, Dvir D, Hahn R, Grayburn P, Moss R, Reisman M, Piazza N, Leipsic J. Multimodality imaging in the context of transcatheter mitral valve replacement: establishing consensus among modalities and disciplines. JACC Cardiovasc Imaging. 2015;8:1191–208.

    Article  PubMed  Google Scholar 

  15. Natarajan N, Patel P, Bartel T, et al. Peri-procedural imaging for transcatheter mitral valve replacement. Cardiovasc Diagn Ther. 2016;6(2):144–59.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abbara S, Arbab-Zadeh A, Callister TQ, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009;3(3):190–204.

    Article  PubMed  Google Scholar 

  17. Machida H, Tanaka I, Fukui R, et al. Current and novel imaging techniques in coronary CT. Radiographics. 2015;35(4):991–1010. A review publication of the Radiological Society of North America, Inc.

    Article  PubMed  Google Scholar 

  18. Halliburton SS, Abbara S, Chen MY, et al. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5(4):198–224.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feuchtner G. Imaging of cardiac valves by computed tomography. Scientifica (Cairo). 2013;2013:270579.

    PubMed Central  Google Scholar 

  20. Van de Heyning CM, Magne J, Vrints CJ, Piérard L, Lancellotti P. The role of multi-imaging modality in primary mitral regurgitation. Eur Heart J Cardiovasc Imaging. 2012;13:139–51.

    Article  PubMed  Google Scholar 

  21. Alkadhi H, Wildermuth S, Bettex DA, et al. Mitral regurgitation: quantification with 16-detector row CT—initial experience. Radiology. 2006;238:463.

    Article  Google Scholar 

  22. Vural M, Ucar O, Celebi OO, et al. Evaluation of effective regurgitant orifice area of mitral valvular regurgitation by multislice cardiac computed tomography. J Cardiol. 2010;56:236–9.

    Article  PubMed  Google Scholar 

  23. Shanks M, Delgado V, Ng AC, et al. Mitral valve morphology assessment: three-dimensional transesophageal echocardiography versus computed tomography. Ann Thorac Surg. 2010;90:1922–9.

    Article  PubMed  Google Scholar 

  24. Guo YK, Yang ZG, Ning G, et al. Isolated mitral regurgitation: quantitative assessment with 64-section multidetector CT—comparison with MR imaging and echocardiography. Radiology. 2009;252(2):369–76.

    Article  PubMed  Google Scholar 

  25. Killeen RP, Arnous S, Martos R, Abbara S, Quinn M, Dodd JD. Chronic mitral regurgitation detected on cardiac MDCT: differentiation between functional and valvular aetiologies. Eur Radiol. 2010;20:1886–95.

    Article  PubMed  Google Scholar 

  26. Feuchtner GM, Alkadhi H, Karlo C, et al. Cardiac CT angiography for the diagnosis of mitral valve prolapse: comparison with echocardiography. Radiology. 2010;254(2):374–83.

    Article  PubMed  Google Scholar 

  27. Delgado V, Tops LF, Schuijf JD, et al. Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC Cardiovasc Imaging. 2009;2:556–65.

    Article  PubMed  Google Scholar 

  28. Beaudoin J, Thai WT, Wai B, et al. Assessment of mitral valve adaptation with gated cardiac computed tomography: validation with three-dimensional echocardiography and mechanistic insight to functional mitral regurgitation. Circ Cardiovasc Imaging. 2013;6:784–9.

    Article  PubMed  Google Scholar 

  29. Blanke P, Dvir D, Cheung A, et al. A simplified D-shaped model of the mitral annulus to facilitate CT-based sizing before transcatheter mitral valve implantation. J Cardiovasc Comput Tomogr. 2014;8:459–67.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Blanke P, Dvir D, Cheung A, et al. Mitral annular evaluation with computed tomography in the context of transcatheter mitral valve implantation. JACC Cardiovasc Imaging. 2015;8(5):612–5.

    Article  PubMed  Google Scholar 

  31. Ormiston JA, Shah PM, Tei C, Wong M. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation. 1981;64:113–20.

    Article  CAS  PubMed  Google Scholar 

  32. Flachskampf FA, Chandra S, Gaddipatti A, et al. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J Am Soc Echocardiogr. 2000;13:277–87.

    Article  CAS  PubMed  Google Scholar 

  33. Mihaila S, Muraru D, Piasentini E, et al. Quantitative analysis of mitral annular geometry and function in healthy volunteers using transthoracic three-dimensional echocardiography. J Am Soc Echocardiogr. 2014;27:846–57.

    Article  PubMed  Google Scholar 

  34. Sonne C, Sugeng L, Watanabe N, et al. Age and body surface area dependency of mitral valve and papillary apparatus parameters: assessment by real-time three-dimensional echocardiography. Eur J Echocardiogr. 2009;10:287–94. The journal of the Working Group on Echocardiography of the European Society of Cardiology.

    Article  PubMed  Google Scholar 

  35. Alkadhi H, Desbiolles L, Stolzmann P, et al. Mitral annular shape, size, and motion in normals and in patients with cardiomyopathy: evaluation with computed tomography. Invest Radiol. 2009;44:218–25.

    Article  PubMed  Google Scholar 

  36. Gordic S, Nguyen-Kim TD, Manka R, et al. Sizing the mitral annulus in healthy subjects and patients with mitral regurgitation: 2D versus 3D measurements from cardiac CT. Int J Cardiovasc Imaging. 2014;30:389–98.

    Article  PubMed  Google Scholar 

  37. Naoum C, Leipsic J, Cheung A, et al. Mitral annular dimensions and geometry in patients with functional mitral regurgitation and mitral valve prolapse: implications for transcatheter mitral valve implantation. JACC Cardiovasc Imaging. 2016;9(3):269–80.

    Article  PubMed  Google Scholar 

  38. Carmo P, Andrade MJ, Aguiar C, Rodrigues R, Gouveia R, Silva JA. Mitral annular disjunction in myxomatous mitral valve disease: a relevant abnormality recognizable by transthoracic echocardiography. Cardiovasc Ultrasound. 2010;8:53.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hutchins GM, Moore GW, Skoog DK. The association of floppy mitral valve with disjunction of the mitral annulus fibrosus. N Engl J Med. 1986;314:535–40.

    Article  CAS  PubMed  Google Scholar 

  40. Grewal J, Suri R, Mankad S, et al. Mitral annular dynamics in myxomatous valve disease: new insights with real-time 3-dimensional echocardiography. Circulation. 2010;121:1423–31.

    Article  PubMed  Google Scholar 

  41. Levack MM, Jassar AS, Shang EK, et al. Three-dimensional echocardiographic analysis of mitral annular dynamics: implication for annuloplasty selection. Circulation. 2012;126:S183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kaplan SR, Bashein G, Sheehan FH, et al. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am Heart J. 2000;139:378–87.

    Article  CAS  PubMed  Google Scholar 

  43. Clavel MA, Mantovani F, Malouf J, et al. Dynamic phenotypes of degenerative myxomatous mitral valve disease: quantitative 3-dimensional echocardiographic study. Circ Cardiovasc Imaging. 2015;8(5). pii: e002989. doi: 10.1161/CIRCIMAGING.114.002989. PMID: 25956922.

  44. Savage DD, Garrison RJ, Castelli WP, et al. Prevalence of submitral (anular) calcium and its correlates in a general population-based sample (the Framingham Study). Am J Cardiol. 1983;51:1375–8.

    Article  CAS  PubMed  Google Scholar 

  45. Fox CS, Vasan RS, Parise H, et al. Mitral annular calcification predicts cardiovascular morbidity and mortality: the Framingham Heart Study. Circulation. 2003;107:1492–6.

    Article  PubMed  Google Scholar 

  46. Maher ER, Young G, Smyth-Walsh B, Pugh S, Curtis JR. Aortic and mitral valve calcification in patients with end-stage renal disease. Lancet. 1987;2:875–7.

    Article  CAS  PubMed  Google Scholar 

  47. Deluca G, Correale M, Ieva R, Del Salvatore B, Gramenzi S, Di Biase M. The incidence and clinical course of caseous calcification of the mitral annulus: a prospective echocardiographic study. J Am Soc Echocardiogr. 2008;21:828–33.

    Article  PubMed  Google Scholar 

  48. Plank F, Al-Hassan D, Nguyen G, et al. Caseous calcification of the mitral annulus. Cardiovasc Diagn Ther. 2013;3:E1–3.

    PubMed  PubMed Central  Google Scholar 

  49. Lutter G, Lozonschi L, Ebner A, et al. First-in-human off-pump transcatheter mitral valve replacement. JACC Cardiovasc Interv. 2014;7:1077–8.

    Article  PubMed  Google Scholar 

  50. Blanke P, Naoum C, Dvir D, et al. Predicting LVOT obstruction in transcatheter mitral valve implantation: concept of the neo-LVOT. JACC Cardiovasc Imaging. 2017;10(4):482–5.

    Article  PubMed  Google Scholar 

  51. Blanke P, Dvir D, Naoum C, et al. Prediction of fluoroscopic angulation and coronary sinus location by CT in the context of transcatheter mitral valve implantation. J Cardiovasc Comput Tomogr. 2015;9:183–92.

    Article  PubMed  Google Scholar 

  52. Ewe SH, Klautz RJ, Schalij MJ, Delgado V. Role of computed tomography imaging for transcatheter valvular repair/insertion. Int J Cardiovasc Imaging. 2011;27:1179–93.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tops LF, Van de Veire NR, Schuijf JD, et al. Noninvasive evaluation of coronary sinus anatomy and its relation to the mitral valve annulus: implications for percutaneous mitral annuloplasty. Circulation. 2007;115:1426–32.

    Article  PubMed  Google Scholar 

  54. Habets J, Mali WP, Budde RP. Multidetector CT angiography in evaluation of prosthetic heart valve dysfunction. Radiographics. 2012;32:1893–905.

    Article  PubMed  Google Scholar 

  55. Tsai I-C, Lin Y-K, Chang Y, et al. Correctness of multidetector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard. Eur Radiol. 2009;19:857–67.

    Article  PubMed  Google Scholar 

  56. Feuchtner G, Plank F, Mueller S, et al. Cardiac computed tomography angiography for evaluation of prosthetic valve dysfunction: a multicenter study in comparison with surgery. Abstract presented at European Society of Cardiology Annual Scientific Meeting. 2016.

    Google Scholar 

  57. Taylor AJ, Cerqueira M, Hodgson JM. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2011;56:1864–94.

    Article  Google Scholar 

  58. Feuchtner GM, Stolzmann P, Dichtl W, et al. Multislice computed tomography in infective endocarditis. Comparison with transesophageal echocardiography and intraoperative findings. J Am Coll Cardiol. 2009;53:436–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon A. Leipsic M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Grover, R., Blanke, P., Kueh, SH., Sellers, S., Leipsic, J.A. (2018). Computed Tomography Imaging for Mitral Valve Regurgitation. In: Tamburino, C., Barbanti, M., Capodanno, D. (eds) Percutaneous Treatment of Left Side Cardiac Valves. Springer, Cham. https://doi.org/10.1007/978-3-319-59620-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59620-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59619-8

  • Online ISBN: 978-3-319-59620-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics