Skip to main content

Numerical Optimization in Microfluidics

  • Chapter
  • First Online:
Book cover Complex Fluid-Flows in Microfluidics

Abstract

Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical optimization is best used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Animations available at https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method. Cited 30 April 2017.

  2. 2.

    A value three orders of magnitude larger than the machine precision is a good starting point, but the optimal value is problem dependent and it is thus a good idea to study, when numerical noise dies out and 2nd order effects sets in.

  3. 3.

    https://github.com/xuy/pyipopt. Cited 30 April 2017.

References

  1. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., et al. (2015). The FEniCS project version 1.5. Archive of Numerical Software, 3(100): 9–23.

    Google Scholar 

  2. Alves, M.A. (2011). Design of optimized microfluidic devices for viscoelastic fluid flow. In Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo. 2: 474–477.

    Google Scholar 

  3. Bongartz, I., Conn, A. R., Gould, N., & Toint, Ph L. (1995). CUTE: Constrained and unconstrained testing environment. ACM Transactions on Mathematical Software (TOMS), 21(1), 123–160.

    Article  MATH  Google Scholar 

  4. Campo-Deaño, L., Galindo-Rosales, F. J., Pinho, F. T., Alves, M. A., & Oliveira, M. S. N. (2011). Flow of low viscosity Boger fluids through a microfluidic hyperbolic contraction. Journal of Non-Newtonian Fluid Mechanics, 166(21), 1286–1296.

    Article  MATH  Google Scholar 

  5. Evgrafov, A. (2015). On Chebyshev’s method for topology optimization of Stokes flows. Structural and Multidisciplinary Optimization, 51(4), 801–811.

    Article  MathSciNet  Google Scholar 

  6. Farrell, P. E., Ham, D. A., Funke, S. W., & Rognes, M. E. (2013). Automated derivation of the adjoint of high-level transient finite element programs. SIAM Journal on Scientific Computing, 35(4), C369–C393.

    Article  MathSciNet  MATH  Google Scholar 

  7. Galindo-Rosales, F. J., Oliveira, M. S. N., & Alves, M. A. (2014). Optimized cross-slot microdevices for homogeneous extension. RSC Advances, 4(15), 7799–7804.

    Article  Google Scholar 

  8. Jensen, K. E., Szabo, P., Okkels, F., & Alves, M. A. (2012). Experimental characterisation of a novel viscoelastic rectifier design. Biomicrofluidics, 6(4), 044112.

    Article  Google Scholar 

  9. Jensen, K. E., Szabo, P., & Okkels, F. (2012). Topology optimization of viscoelastic rectifiers. Applied Physics Letters, 100(23), 234102.

    Article  Google Scholar 

  10. Jensen, K. E., Szabo, P., & Okkels, F. (2014). Optimization of bistable viscoelastic systems. Structural and Multidisciplinary Optimization, 49(5), 733–742.

    Article  Google Scholar 

  11. Krühne, U., Larsson, H., Heintz, S., Ringborg, R. H., Rosinha, I. P., Bodla, V. K., et al. (2014). Systematic development of miniaturized (bio) processes using Process Systems Engineering (PSE) methods and tools. Chemical and Biochemical Engineering Quarterly, 28(2), 203–214.

    Article  Google Scholar 

  12. Lin, S., Zhao, L., Guest, J. K., Weihs, T. P., & Liu, Z. (2015). Topology optimization of fixed-geometry fluid diodes. Journal of Mechanical Design, 137(8), 081402.

    Article  Google Scholar 

  13. Svanberg, K. (1987). The method of moving asymptotes-A new method for structural optimization. International Journal for Numerical Methods in Engineering, 24(2), 359–373.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Villum Foundation (Grant No. 9301) and the Danish Council for Independent Research (DNRF122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Ejlebjerg Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jensen, K.E. (2018). Numerical Optimization in Microfluidics. In: Galindo-Rosales, F. (eds) Complex Fluid-Flows in Microfluidics. Springer, Cham. https://doi.org/10.1007/978-3-319-59593-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59593-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59592-4

  • Online ISBN: 978-3-319-59593-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics