Skip to main content

Numerical Simulations of Complex Fluid-Flows at Microscale

  • Chapter
  • First Online:
  • 1410 Accesses

Abstract

This chapter provides to the students an up-to-date overview of the current challenges in the numerical simulations of complex fluid-flows at microscale. At such reduced length scales, phenomena involving viscous forces, reactive flows and surface effects (electrokinetics, slip flows, capillarity, surface tension) may become more important, and eventually overcame the effects of other macro scale predominant forces, such as inertial or gravitational effects. Therefore, numerical methods to simulate complex fluid-flows at microscale need to account with this new forces interplay arrangement. This chapter includes detailed insights into the main differences between macro and micro numerical simulations, presented in a modular view, and containing the synopsis of the theoretical models, numerical methods and simulation tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.resolvedanalytics.com/theflux/comparing-popular-cfd-software-packages.

  2. 2.

    www.openfoam.com.

  3. 3.

    http://github.com/fppimenta/rheoTool.

  4. 4.

    www.csc.fi/web/elmer.

  5. 5.

    http://fenicsproject.org.

  6. 6.

    www.palabos.org.

  7. 7.

    http://github.com/acuoci/laminarSMOKE.

  8. 8.

    An extended list, with over 200 CFD related software packages, can be found here www.cfd-online.com/Wiki/Codes.

  9. 9.

    http://arxiv.org/pdf/1508.01041v2.pdf.

References

  1. Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442, 368–373.

    Article  Google Scholar 

  2. In: KARIM Foresighting on microinjection moulding technology (2014) KARIM. knowledge acceleration and responsible innovation meta-network. Available via DIALOG. http://www.karimnetwork.com/wp-content/uploads/2014/04/KARIM-foresight-report-4.pdf. Cited 17 Jan 2017.

  3. Pennathur, S. (2008). Flow control in microfluidics: are the workhorse flows adequate? Lab on a Chip, 8, 383–387.

    Article  Google Scholar 

  4. Dendukuri, D., & Doyle, P. S. (2009). The synthesis and assembly of polymeric microparticles using microfluidics. Advanced Materials, 21, 4071–4086.

    Article  Google Scholar 

  5. Hoang, D. A., van Steijn, V., Portela, L. M., Kreutzer, M. T., & Kleijn, C. R. (2013). Benchmark numerical simulations of segmented two-phase flows in microchannels using the volume of fluid method. Computers & Fluids, 86, 28–36.

    Article  MATH  Google Scholar 

  6. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2002). Transport phenomena (2nd ed.). New York, NY: Wiley.

    Google Scholar 

  7. Bird, R. B., Armstrong, R. C., & Hassager, O. (1987). Dynamics of polymeric liquids: fluid mechanics (2nd ed.). New York, NY: Wiley.

    Google Scholar 

  8. Fattal, R., & Kupferman, R. (2004). Constitutive laws for the matrix-logarithm of the conformation tensor. Journal of Non-Newtonian Fluid Mechanics, 123, 281–285.

    Article  MATH  Google Scholar 

  9. Balci, N., Thomases, B., Renardy, M., & Doering, C. R. (2011). Symmetric factorization of the conformation tensor in viscoelastic fluid models. Journal of Non-Newtonian Fluid Mechanics, 166–11:546–553

    Google Scholar 

  10. Afonso, A. M., Pinho, F. T., & ALves, M. A. (2012). The kernel-conformation constitutive laws. Journal of Non-Newtonian Fluid Mechanics, 167–168, 30–37.

    Google Scholar 

  11. Owens, R. G., Phillips, T. N. (2002). Computational rheology. World Scientific.

    Google Scholar 

  12. Keunings, R. (1986). On the high Weissenberg number problem. Journal of Non-Newtonian Fluid Mechanics, 20, 209–226.

    Article  MATH  Google Scholar 

  13. Poole, R. J., Alves, M. A., & Oliveira, P. J. (2007). Purely elastic flow asymmetries. Physical Review Letters, 99(16), 164503.

    Article  Google Scholar 

  14. Arratia, P. E., Thomas, C. C., Durian, D. J., & Gollub, J. P. (2006). Elastic instabilities of polymer solutions in cross-channel flow. Physical Revision Letters, 96(14), 144502.

    Article  Google Scholar 

  15. Raessi, M., Bussmann, M., & Mostaghimi, J. (2009). A semi-implicit finite volume implementation of the CSF method for treating surface tension in interfacial flows. International Journal for Numerical Methods in Fluids, 59, 1093–1110.

    Article  MathSciNet  MATH  Google Scholar 

  16. Wrner, M. (2012). Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Micro Nano, 12(6), 841–86.

    Article  Google Scholar 

  17. Liu, J., Yap, Y. F., & Nguyen, N. T. (2009). Motion of a droplet through microfluidic ratchets. Physical Review E, 80(4), 046319.

    Article  Google Scholar 

  18. Biddiss, E., Erickson, D., & Li, D. (2004). Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Analytical Chemistry, 76, 3208–3213.

    Article  Google Scholar 

  19. Ju, Y., & Maruta, K. (2011). Microscale combustion: Technology development and fundamental research. Progress in Energy and Combustion Science, 37(6), 669–715.

    Article  Google Scholar 

  20. Cheng, T. S., Wu, C. Y., Chen, C. P., Li, Y. H., Chao, Y. C., Yuan, T., et al. (2006). Detailed measurement and assessment of laminar hydrogen jet diffusion flames. Comb Flame, 146(1), 268–282.

    Article  Google Scholar 

  21. Rosa, P., Karayiannis, T. G., & Collins, M. W. (2009). Single-phase heat transfer in microchannels: The importance of scaling effects. Applied Thermal Engineering, 29, 3447–3468.

    Article  Google Scholar 

  22. Monaghan, J. J. (1988). An introduction to SPH. Computer Physics Communications, 48, 88–96.

    Article  MATH  Google Scholar 

  23. McNamara, G. R., & Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 61, 2332–2335.

    Article  Google Scholar 

  24. Gad-el-Hak, M. (1999). The fluid mechanics of microdevices: The Freeman scholar lecture. Journal of Fluids Engineering, 121, 5–33.

    Article  Google Scholar 

  25. Xue, H., Ji, H., & Shu, C. (2003). Prediction of flow and heat transfer characteristics in micro couette flows. Microscale Thermophysical Engineering, 7, 51–68.

    Article  Google Scholar 

  26. Roache, P. J. (1972). Computational Fluid Dynamics. Denver, Colorado: Hermosa Publishers.

    MATH  Google Scholar 

  27. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation.

    Google Scholar 

  28. Zienkiewicz, O. C., Taylor R. L. (1989). The finite element method: basic formulation and linear problems. McGraw-Hill College.

    Google Scholar 

  29. Becker, A. A. (1992). The boundary element method in engineering. London: McGraw-Hill.

    Google Scholar 

  30. Sato, T., & Richardson, S. M. (1994). Explicit numerical simulation of time- dependent viscoelastic flow problems by a finite element/finite volume method. Journal of Non-Newtonian Fluid Mechanics, 51, 249–275.

    Article  Google Scholar 

  31. Patera, A. T. (1984). A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics, 54, 468–488.

    Article  MATH  Google Scholar 

  32. Quan, S. (2011). Simulations of multiphase flows with multiple length scales using moving mesh interface tracking with adaptive meshing. Journal of Computational Physics, 230, 5430–5448.

    Article  MathSciNet  MATH  Google Scholar 

  33. Montefuscolo, F., Sousa, F. S., & Buscaglia, G. C. (2014). High-order ALE schemes for incompressible capillary flows. Journal of Computational Physics, 278, 133–147.

    Article  MathSciNet  MATH  Google Scholar 

  34. Pimenta, F., & Alves, M. A. (2017). Stabilization of an open-source finite-volume solver for viscoelastic fluid flows. Journal of Non-Newtonian Fluid Mechanics, 239, 85–104.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.M. Afonso acknowledges the funding by FCT, COMPETE and FEDER through Project No. PTDC/EMS-ENE/3362/ 2014. The author would also like to thank Prof. Rafael Figueiredo from Univeridade Federal de Uberlândia, Brazil, for the assistance and helpfull discussion regarding Figs. 4.1 and 4.3

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. Afonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Afonso, A.M. (2018). Numerical Simulations of Complex Fluid-Flows at Microscale. In: Galindo-Rosales, F. (eds) Complex Fluid-Flows in Microfluidics. Springer, Cham. https://doi.org/10.1007/978-3-319-59593-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59593-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59592-4

  • Online ISBN: 978-3-319-59593-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics