Skip to main content

Computational Evaluation of Transverse Thermal Conductivity of Natural Fiber Composites

  • Chapter
  • First Online:
Improved Performance of Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 72))

Abstract

The finite element analysis is used to investigate the sensitivity of the effective transverse thermal conductivity of polymeric composites reinforced with Manila hemp fibers in terms of their degree of saturation. It is predicted that the hierarchical structure of the fiber bundle will highly magnify the rate of water absorption and in consequence, the effective transverse thermal conductivity of the composite is altered. This influence is quantized in terms of the volume fraction of the fiber bundle and the lumen to produce a homogenized representative continuum. It was found that increasing the fiber volume fraction in a dry medium results in a decrease in the thermal conductivity whereas an increase of conductivity will be evident in a wet condition. Furthermore, the increase in the volume fraction of the lumen enhances the thermal conductivity by retaining more water during saturation which supports the developed hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assarar M, Scida D, El Mahi A, Poilâne C, Ayad R (2011) Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: flax–fibres and glass–fibres. Mater Des 32(2):788–795

    Article  Google Scholar 

  2. Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel B (2009) Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Mater Sci Eng, A 517(1–2):344–353

    Article  Google Scholar 

  3. Behzad T, Sain M (2007) Measurement and prediction of thermal conductivity for hemp fiber reinforced composites. Polym Eng Sci 47(7):977–983

    Article  Google Scholar 

  4. Célino A, Freour S, Jacquemin F, Casari P (2014) The hygroscopic behavior of plant fibers: a review. Front Chem 1:1–12

    Article  Google Scholar 

  5. Chow CPL, Xing XS, Li RKY (2007) Moisture absorption studies of sisal fibre reinforced polypropylene composites. Compos Sci Technol 67(2):306–313

    Article  Google Scholar 

  6. Dhakal H, Zhang Z, Richardson M (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683

    Article  Google Scholar 

  7. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  Google Scholar 

  8. Fiedler T, Hosseini S, Belova IV, Murch GE, Öchsner A (2009) A refined finite element analysis on the thermal conductivity of perforated hollow sphere structures. Comput Mater Sci 47(2):314–319

    Article  Google Scholar 

  9. Islam MR, Pramila A (1999) Thermal conductivity of fiber reinforced composites by the fem. J Compos Mater 33(18):1699–1715

    Article  Google Scholar 

  10. Javanbakht Z, Öchsner A (2017) Advanced finite element simulation with MSC Marc: application of user subroutines. Springer, Cham

    Book  Google Scholar 

  11. Javanbakht Z, Hall W, Öchsner A (2016a) Automatized estimation of the effective thermal conductivity of carbon fiber reinforced composite materials. Defect Diffus Forum 370:177–183

    Google Scholar 

  12. Javanbakht Z, Hall W, Öchsner A (2016b) Finite element evaluation of effective thermal conductivity of short carbon nano tubes: a comparative study. Defect Diffus Forum 372:208–214

    Google Scholar 

  13. Kalaprasad G, Pradeep P, Mathew G, Pavithran C, Thomas S (2000) Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres. Compos Sci Technol 60(16):2967–2977

    Article  Google Scholar 

  14. Li X, Tabil LG, Oguocha IN, Panigrahi S (2008) Thermal diffusivity, thermal conductivity, and specific heat of flax fiber–hdpe biocomposites at processing temperatures. Compos Sci Technol 68(7–8):1753–1758

    Article  Google Scholar 

  15. Liu K, Takagi H, Yang Z (2011) Evaluation of transverse thermal conductivity of manila hemp fiber in solid region using theoretical method and finite element method. Mater Des 32(8–9):4586–4589

    Article  Google Scholar 

  16. Liu K, Takagi H, Osugi R, Yang Z (2012) Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fiber composites. Compos Sci Technol 72(5):633–639

    Article  Google Scholar 

  17. Mangal R, Saxena NS, Sreekala MS, Thomas S, Singh K (2003) Thermal properties of pineapple leaf fiber reinforced composites. Mater Sci Eng, A 339(1–2):281–285

    Article  Google Scholar 

  18. Öchsner A (2016) Computational statics and dynamics: an introduction based on the finite element method. Springer, Singapore

    Book  Google Scholar 

  19. Öchsner A, Merkel M (2013) One-dimensional finite elements: an introduction to the FE method. Springer, Berlin and Heidelberg

    Book  MATH  Google Scholar 

  20. Placet V (2009) Characterization of the thermo-mechanical behaviour of hemp fibres intended for the manufacturing of high performance composites. Compos A Appl Sci Manuf 40(8):1111–1118

    Article  Google Scholar 

  21. Rakovsky SK (2014) Analytical tools and industrial applications for chemical processes and polymeric materials. Apple Academic Press, Point Pleasant

    Google Scholar 

  22. Rauwendaal C (2014) Polymer extrusion, 5th edn. Hanser Publications and Hanser Publication, Munich and Cincinnati

    Book  Google Scholar 

  23. Schirp A, Wolcott MP (2007) Influence of fungal decay and moisture absorption on mechanical properties of extruded wood-plastic composites. Wood Fiber Sci 37(4):643–652

    Google Scholar 

  24. Shah DU, Bock MCD, Mulligan H, Ramage MH (2016) Thermal conductivity of engineered bamboo composites. J Mater Sci 51(6):2991–3002

    Article  Google Scholar 

  25. Singh RP, Heldman DR (2014) Introduction to food engineering, 5th edn. Food science and technology international series. Elsevier Academic Press, Amsterdam

    Google Scholar 

  26. Wang H, Xiao Y, Qin QH (2016) 2D hierarchical heat transfer computational model of natural fiber bundle reinforced composite. Scientia Iranica Trans B, Mech Eng 23(1):268

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zia Javanbakht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Javanbakht, Z., Hall, W., Öchsner, A. (2018). Computational Evaluation of Transverse Thermal Conductivity of Natural Fiber Composites. In: Öchsner, A., Altenbach, H. (eds) Improved Performance of Materials. Advanced Structured Materials, vol 72. Springer, Cham. https://doi.org/10.1007/978-3-319-59590-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59590-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59589-4

  • Online ISBN: 978-3-319-59590-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics