LES of Particle Dispersion and Gas-to-Particle Mass Transfer in Turbulent Shear Flows

  • Sean C. Garrick
  • Michael Bühlmann
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

LES of condensation gas-to-particle mass transfer in turbulent incompressible mixing layers are performed. The flows are comprised of a particle-free condensable vapor mixing with micron-size porous particles. Simulations are performed at a single Reynolds number while varying the particle Stokes number, the mass transfer and convective time scales, and the vapor concentration at the particle surface. DNS has shown to be quite useful in capturing the fluid–particle interactions though at a high compute time. The goal of this work is to use LES to obtain a high level of fidelity to the DNS but with significantly reduced computational requirements.

References

  1. 2.
    Aldama, A.A.: Filtering techniques for turbulent flow simulations. Springer, New York (1990)CrossRefMATHGoogle Scholar
  2. 6.
    Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid scale models for large eddy simulation. AIAA Paper 80-1357 (1980)Google Scholar
  3. 7.
    Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved turbulence models based on large eddy simulations of homogeneous, incompressible, turbulent flows. Department of Mechanical Engineering Report TF-19, Stanford University, Stanford, CA (1983)Google Scholar
  4. 8.
    Barlow, R.S., Dibble, R.W., Chen, J.Y., Lucht, R.P.: Effects of Damkholer number on superequilibrium OH concentration in turbulent nonpremixed jet flames. Combust. Flame 82, 235–251 (1990)CrossRefGoogle Scholar
  5. 14.
    Carpenter, M.H.: A high-order compact numerical algorithm for supersonic flows. In: Morton, K.W. (ed.) 12th International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 371, pp. 254–258. Springer, New York (1990)Google Scholar
  6. 15.
    Chorin, A.J.: Vorticity and Turbulence. Springer, New York (1994)CrossRefMATHGoogle Scholar
  7. 17.
    Clack, H.L.: Mass transfer within electrostatic precipitators: in-flight adsorption of mercury by charged suspended particulates. Environ. Sci. Technol. 40, 3617–3622 (2006)CrossRefGoogle Scholar
  8. 19.
    Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 20.
    Crow, S.C., Champagne, F.H.: Orderly structure in jet turbulence. J. Fluid Mech. 48, 547–591 (1971)CrossRefGoogle Scholar
  10. 23.
    Danaila, I., Dusek, J., Anselmet, F.: Coherent structures in a round, spatially evolving, unforced, homogeneous jet at low Reynolds numbers. Phys. Fluids 9(11), 3323–3342 (1997)CrossRefGoogle Scholar
  11. 25.
    Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, New York (1981)MATHGoogle Scholar
  12. 26.
    Eidson, T.M.: Numerical simulation of the turbulent Rayleigh-Benard problem using subgrid modelling. J. Fluid Mech. 158, 245–268 (1985)MathSciNetCrossRefMATHGoogle Scholar
  13. 27.
    Ferziger, J.H.: Higher level simulations of turbulent flows. Stanford University Report TF-16, Department of Mechanical Engineering, Stanford University, Stanford, CA (1981)Google Scholar
  14. 28.
    Ferziger, J.H.: Large eddy simulations: its role in turbulence research. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds.) Theoretical Approaches in Turbulence, pp. 51–72. Springer, New York (1987)Google Scholar
  15. 33.
    Galperin, B., Orszag, S.A. (eds.): Large Eddy Simulations of Complex Engineering and Geophysical Flows. Cambridge University Press, Cambridge (1993)Google Scholar
  16. 34.
    Garrick, S.C., Jaberi, F.A., Givi, P.: Large eddy simulation of scalar transport in a turbulent jet flow. In: Knight, D., Sakell, L. (eds.) Recent Advances in DNS and LES. Fluid Mechanics and Its Applications, vol. 54, pp. 155–166. Kluwer Academic Publishers, The Netherlands (1999)CrossRefGoogle Scholar
  17. 35.
    Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)MathSciNetCrossRefMATHGoogle Scholar
  18. 36.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)CrossRefMATHGoogle Scholar
  19. 37.
    Gicquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B.: Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14(3), 1196–1214 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 38.
    Givi, P.: Model free simulations of turbulent reactive flows. Prog. Energy Combust. Sci. 15, 1–107 (1989)CrossRefGoogle Scholar
  21. 44.
    Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)CrossRefMATHGoogle Scholar
  22. 46.
    Karatza, D., Lancia, A., Musmarra, D., Pepe, F., Volpicelli, G.: Removal of mercuric chloride from flue gas by sulfur impregnated activated carbon. Hazard. Waste Hazard. Mater. 13(1), 95–105 (1996)CrossRefGoogle Scholar
  23. 48.
    Kennedy, C.A., Carpenter, M.H.: Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Math. 14, 397–433 (1994)MathSciNetCrossRefMATHGoogle Scholar
  24. 50.
    Knight, D., Sakell, L. (eds.): Recent Advances in DNS and LES. Fluid Mechanics and its Applications. Kluwer Academic Press, The Netherlands (1993)Google Scholar
  25. 56.
    Lide, D.R. (ed.): Handbook of Chemistry and Physics CRCnet BASE 2000, 79th edn. RAmEX, Inc, Los Angeles (2000)Google Scholar
  26. 57.
    Liepmann, D.: Streamwise vorticity and entrainment in the near field entrainment of a round jet. Phys. Fluids A. 3(5), 1179–1187 (1991)CrossRefGoogle Scholar
  27. 58.
    Liepmann, D., Gharib, M.: The role of streamwise vorticity in the near field entrainment of round jets. J. Fluid Mech. 245, 643–668 (1992)CrossRefGoogle Scholar
  28. 59.
    Lilly, D.K.: On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Mon. Weather Rev. 93(1), 11–26 (1965)CrossRefGoogle Scholar
  29. 60.
    Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4(3), 633–634 (1992)CrossRefGoogle Scholar
  30. 62.
    Liu, S., Meneveau, C., Katz, J.: On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83–119 (1994)CrossRefGoogle Scholar
  31. 63.
    Liu, C., Sakell, L., Beutner, T. (eds.): DNS/LES – Progress and Challenges. Greyden Press, Columbus (2001)Google Scholar
  32. 65.
    Love, M.D.: An introduction to the large eddy simulation technique. J. Inst. Nucl. Eng. 20(2), 35–42 (1979)Google Scholar
  33. 66.
    Ma, Y.H., Lee, T.Y.: Transient diffusion in solids with a bipore distribution. AlChE J. 22(1), 147–152 (1976)CrossRefGoogle Scholar
  34. 67.
    MacCormack, R.W.: The effect of viscosity in hypervelocity impact cratering. AIAA Paper 69–354 (1969)Google Scholar
  35. 69.
    Madsen, J.I., Starns, T., Rogers, W.A., O’Brien, T.J.: The impact of turbulent mixing on sorbent dispersion in coal-derived flue gas. In: International Conference on Air Quality V, 19–21 September 2005, Arlington, VA, USA (2005)Google Scholar
  36. 70.
    Marchioli, C., Salvetti, M.V., Soldati, A.: Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20(4), 040603 (2008). doi:10.1063/1.2911018CrossRefMATHGoogle Scholar
  37. 71.
    Martin, M.P., Candler, G.V.: Subgrid-scale models for compressible LES. Theor. Comput. Fluid Dyn. 13, 361–376 (2000)MATHGoogle Scholar
  38. 79.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  39. 80.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  40. 84.
    Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flow. Ann. Rev. Fluid Mech. 16, 99–137 (1984)CrossRefMATHGoogle Scholar
  41. 88.
    Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)Google Scholar
  42. 90.
    Sagaut, P.: Large-Eddy Simulations for Incompressible Flows: An Introduction. Scientific Computation, 2nd edn. Springer, Berlin (2001)Google Scholar
  43. 93.
    Salvetti, M.V., Banerjee, S.: A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. Fluids 7(11), 2831–2847 (1995)CrossRefMATHGoogle Scholar
  44. 94.
    Sami, S., Carmody, T., Rouse, H.: Jet diffusion in the region of flow establishment. J. Fluid Mech. 27, 231–252 (1967)CrossRefGoogle Scholar
  45. 97.
    Scala, F.: Simulation of mercury capture by activated carbon injection in incinerator flue gas. 1. In-duct removal. Environ. Sci. Technol. 35, 4367–4372 (2001)Google Scholar
  46. 100.
    Schefer, R.W.: Data base for a turbulent, nonpremixed nonreacting propane-jet flow. Technical Report, Combustion Research Facility Sandia National Laboratories, Livermore, CA (1985)Google Scholar
  47. 101.
    Schumann, U., Friedrich, R. (eds.): Direct and Large Eddy Simulations of Turbulence: Proceedings of the EUROMECH Colloquium No. 199. Vieweg-Verlag, Braunschweig (1986)Google Scholar
  48. 104.
    Slattery, J.C., Bird, R.B.: Calculation of the diffusion coefficient of dilute gases and of the self-diffusion coefficient of dense gases. AlChE J. 4(2), 137–142 (1958)CrossRefGoogle Scholar
  49. 105.
    Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  50. 106.
    Smith, L.L., Dibble, R.W., Talbot, L., Barlow, R.S., Carter, C.D.: Laser Raman scattering measurements of differential molecular diffusion in nonreacting turbulent jets of H 2CO 2 mixing with air. Phys. Fluids 7(6), 1455–1466 (1995)CrossRefGoogle Scholar
  51. 108.
    Strykowski, P.J., Niccum, D.L.: Jet diffusion in the region of flow establishment. J. Fluid Mech. 227, 309–343 (1991)CrossRefGoogle Scholar
  52. 113.
    Voke, P.R., Collins, M.W.: Large eddy simulation: retrospect and prospects. PhysicoChem. Hydrodyn. 4(2), 119–161 (1983)Google Scholar
  53. 114.
    Vreman, B., Geurts, B., Kuerten, H.: Large-eddy simulations of the turbulent mixing layer. J. Fluid Mech. 339, 357–390 (1997)MathSciNetCrossRefMATHGoogle Scholar
  54. 117.
    Wygnanski, I., Fiedler, H.: Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577–612 (1969)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Sean C. Garrick
    • 1
  • Michael Bühlmann
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations