Advertisement

Fundamentals of Gas-to-Particle Mass Transfer

  • Sean C. Garrick
  • Michael Bühlmann
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Gas-to-particle mass transfer is studied analytically as well as numerically. Porous particles are modeled as a homogeneous assembly of sorbent material, forming a spherical, macroporous structure. The concentration in the macropores and in the solid is obtained as a function of time and space. The “Langmuir” theory is used to model sorption kinetics. Results show that, over a wide time range, the concentration in the solid is negligible, and the macropore concentration reaches a pseudo-steady state. For that case an analytical expression is derived for the macropore concentration inside the particle and at the particle surface in particular. It is shown that the surface concentration decreases with decreasing Biot numbers and increasing Thiele numbers. The analytical model discussed in this work can be utilized in computational mass transfer studies in lieu of the “perfect sink” assumption, in which the surface concentration is identically zero. Moreover, it captures the effects of enhanced mass transfer due to convection at the gas–particle interface.

References

  1. 1.
    Abram, J.C., Bennett, M.C.: Carbon blacks as model porous adsorbents. J. Colloid Interface Sci. 27(1), 1–6 (1968)CrossRefGoogle Scholar
  2. 4.
    Arpaci, V.S.: Conduction Heat Transfer. Pearson Custom Publishing, New York (1991)MATHGoogle Scholar
  3. 5.
    Ausman, J.M., Watson, C.C.: Mass transfer in a catalyst pellet during regeneration. Chem. Eng. Sci. 17, 323–329 (1962)CrossRefGoogle Scholar
  4. 16.
    Clack, H.L.: Mass transfer within electrostatic precipitators: trace gas adsorption by sorbent-covered plate electrodes. J. Air Waste Manage. Assoc. 56, 759–766 (2006)CrossRefGoogle Scholar
  5. 17.
    Clack, H.L.: Mass transfer within electrostatic precipitators: in-flight adsorption of mercury by charged suspended particulates. Environ. Sci. Technol. 40, 3617–3622 (2006)CrossRefGoogle Scholar
  6. 18.
    Clack, H.L.: Particle size distribution effects on gas–particle mass transfer within electostatic precipitators. Environ. Sci. Technol. 40, 3929–3933 (2006)CrossRefGoogle Scholar
  7. 21.
    Cunningham, R.E., Williams, R.J.J.: Diffusion in Gases and Porous Media. Plenum Press, New York (1980)CrossRefGoogle Scholar
  8. 22.
    Damköhler, G.: über die adsorptionsgeschwindigkeit von gasen an porösen adsorbentien. Z. Phys. Chem. 174, 222–238 (1935)Google Scholar
  9. 29.
    Flora, J.R.V., Hargis, R.A., O’Dowd, W.J., Pennline, H.W., Vidic, R.D.: Modeling sorbent injection for mercury control in baghouse filters: I—model development and sensitivity analysis. J. Air Waste Manage. Assoc. 53, 478–488 (2003)CrossRefGoogle Scholar
  10. 30.
    Friedlander, S.K.: Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd edn. Oxford University Press, New York (2000)Google Scholar
  11. 31.
    Friesen, W.I., Mikula, R.J.: Fractal dimensions of coal particles. J. Colloid Interface Sci. 120(1), 263–271 (1987)CrossRefGoogle Scholar
  12. 32.
    Frössling, N.: über die verdunstung fallender tropfen. Gerlands Beitr. Geophys. 52, 170–215 (1938)Google Scholar
  13. 39.
    Guan, G., Zhu, J., Xia, S., Feng, Z., Davis, E.J.: Simulation of mass transfer from an oscillating microdroplet. Int. J. Heat Mass Transf. 48, 1705–1715 (2005)CrossRefMATHGoogle Scholar
  14. 40.
    Harrison, B.H.: Characterization of superactivated carbons. J. Colloid Interface Sci. 71(2), 367–374 (1979)CrossRefGoogle Scholar
  15. 41.
    Hinds, W.C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd edn. Wiley, New York (1999)Google Scholar
  16. 43.
    Ishida, M., Wen, C.Y.: Comparison of kinetic and diffusional models for solid–gas reactions. AlChE J. 14(2), 311–317 (1968)CrossRefGoogle Scholar
  17. 45.
    Karatza, D., Lancia, A., Musmarra, D., Pepe, F., Volpicelli, G.: Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon. Combust. Sci. Technol. 112, 163–174 (1996)CrossRefGoogle Scholar
  18. 46.
    Karatza, D., Lancia, A., Musmarra, D., Pepe, F., Volpicelli, G.: Removal of mercuric chloride from flue gas by sulfur impregnated activated carbon. Hazard. Waste Hazard. Mater. 13(1), 95–105 (1996)CrossRefGoogle Scholar
  19. 47.
    Karatza, D., Lancia, A., Musmarra, D.: Fly ash capture of mercuric chloride vapors from exhaust combustion gas. Environ. Sci. Technol. 32, 3999–4004 (1998)CrossRefGoogle Scholar
  20. 51.
    Krishnan, S.V., Gullett, B.K., Jozewicz, W.: Sorption of elemental mercury by activated carbons. Environ. Sci. Technol. 28, 1506–1512 (1994)CrossRefGoogle Scholar
  21. 53.
    Lancia, A., Karatza, D., Musmarra, D., Pepe, F.: Adsorption of mercuric chloride from simulated incinerator exhaust gas by means of SorbalitTM particles. J. Chem. Eng. Jpn. 29(6), 939–946 (1996)CrossRefGoogle Scholar
  22. 54.
    Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  23. 64.
    Logan, B.E.: Environmental Transport Processes. Wiley, Hoboken (1999)Google Scholar
  24. 66.
    Ma, Y.H., Lee, T.Y.: Transient diffusion in solids with a bipore distribution. AlChE J. 22(1), 147–152 (1976)CrossRefGoogle Scholar
  25. 68.
    Madsen, J.I., Rogers, W.A., O’Brien, T.J.: Computational modeling of mercury control by sorbent injection. In: Proceedings of ASME Power 2004, 30 March–1 April, Baltimore, MD, USA (2004)Google Scholar
  26. 72.
    Meserole, F.B., Chang, R., Carey, T.R., Machac, J., Richardson, C.F.: Modeling mercury removal by sorbent injection. J. Air Waste Manage. Assoc. 49, 694–704 (1999)CrossRefGoogle Scholar
  27. 83.
    Rawlings, J.B., Ekerdt, J.G.: Chemical Reactor Analysis and Design Fundamentals. Nob Hill Publishing, Madison (2002)Google Scholar
  28. 86.
    Rosner, D.E.: Transport processes in chemically reacting flow systems. Butterworth, Boston (1986)Google Scholar
  29. 87.
    Ruckenstein, E., Vaidyanathan, A.S., Youngquist, G.R.: Sorption by solids with bidisperse pore structures. Chem. Eng. Sci. 26, 1305–1318 (1971)CrossRefGoogle Scholar
  30. 88.
    Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)Google Scholar
  31. 91.
    Sahin, E., Dogu, T., Mürtezaoğlu, K.: Thermal effects on effectiveness of catalysts having bidisperse pore size distribution. Chem. Eng. J. 93, 143–149 (2003)CrossRefGoogle Scholar
  32. 97.
    Scala, F.: Simulation of mercury capture by activated carbon injection in incinerator flue gas. 1. In-duct removal. Environ. Sci. Technol. 35, 4367–4372 (2001)Google Scholar
  33. 98.
    Scala, F.: Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal. Environ. Sci. Technol. 35, 4373–4378 (2001)Google Scholar
  34. 99.
    Scala, F.: Modeling mercury capture in coal-fired power plant flue gas. Ind. Eng. Chem. Res. 43, 2575–2589 (2004)CrossRefGoogle Scholar
  35. 102.
    Serre, S.D., Silcox, G.D.: Adsorption of elemental mercury on the residual carbon in coal fly ash. Ind. Eng. Chem. Res. 39, 1723–1730 (2000)CrossRefGoogle Scholar
  36. 103.
    Sherwood, T.K., Pigford, R.L., Wilke, C.R.: Mass Transfer. McGraw-Hill, New York (1975)Google Scholar
  37. 104.
    Slattery, J.C., Bird, R.B.: Calculation of the diffusion coefficient of dilute gases and of the self-diffusion coefficient of dense gases. AlChE J. 4(2), 137–142 (1958)CrossRefGoogle Scholar
  38. 109.
    Tannehil, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, 2nd edn. Taylor and Francis, Washington (1997)Google Scholar
  39. 110.
    Thiele, E.W.: Relation between catalytic activity and size of particle. Ind. Eng. Chem. 31(7), 916–920 (1939)CrossRefGoogle Scholar
  40. 112.
    U.S. EPA: Mercury study report to congress volume I: executive summary (epa-452/r-97-003). Technical Report, U.S. Environmental Protection Agency (1997)Google Scholar
  41. 118.
    Yan, Y., Peng, X.F., Lee, D.J.: Transport and reaction characteristics in flue gas desulfurization. Int. J. Therm. Sci. 42, 943–949 (2003)CrossRefGoogle Scholar
  42. 119.
    Youngquist, G.R., Allen, J.L., Eisenberg, J.: Adsorption of hydrocarbons by synthetic zeolites. Ind. Eng. Chem. Prod. Res. Dev. 10, 308–314 (1971)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Sean C. Garrick
    • 1
  • Michael Bühlmann
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations