Skip to main content

Unfolding the Protein Surface for Pattern Matching

  • Conference paper
  • First Online:
Book cover Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

  • 1930 Accesses

Abstract

Protein 3-D structural data is a valuable resource in computational biology, and the comparison and interpretation of protein structural patterns have remained scientific and computational challenges. We introduce a novel representation of 3-D protein surface patches as 2-D images, obtained using dimension reduction. We utilize image registration to compare these surface patches and infer protein function and binding based on surface similarity. Our surface representation can capture various structural and physicochemical properties, including curvature, electrostatic potential, hydrophobicity, and evolutionary conservation. The results we present support the use of surface images as a new type of family-specific signatures in functional annotation and drug-binding tasks. We demonstrate the ability of our method to detect local surface similarities between proteins and to correctly identify functional classification of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Najmanovich, R., Kurbatova, N., Thornton, J.: Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Bioinformatics 24(16), i105–i111 (2008)

    Article  Google Scholar 

  2. Chruszcz, M., et al.: Unmet challenges of structural genomics. Curr. Opin. Struct. Biol. 20(5), 587–597 (2010)

    Article  Google Scholar 

  3. Zhao, C., Sacan, A.: UniAlign: protein structure alignment meets evolution. Bioinformatics 31(19), 3139–3146 (2015)

    Article  Google Scholar 

  4. Sacan, A., et al.: LFM-Pro: a tool for detecting significant local structural sites in proteins. Bioinformatics 23(6), 709–716 (2007)

    Article  Google Scholar 

  5. Hutchinson, E.G., Thornton, J.M.: PROMOTIF–a program to identify and analyze structural motifs in proteins. Protein Sci. 5(2), 212–220 (1996)

    Article  Google Scholar 

  6. Laurie, A.T., Jackson, R.M.: Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9), 1908–1916 (2005)

    Article  Google Scholar 

  7. Hendlich, M., Rippmann, F., Barnickel, G.: LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph Model 15(6), 359–363 (1997)

    Article  Google Scholar 

  8. Sael, L., et al.: Rapid comparison of properties on protein surface. Proteins 73(1), 1–10 (2008)

    Article  Google Scholar 

  9. Das, S., Kokardekar, A., Breneman, C.M.: Rapid comparison of protein binding site surfaces with property encoded shape distributions. J. Chem. Inf. Model. 49(12), 2863–2872 (2009)

    Article  Google Scholar 

  10. Kinoshita, K., Nakamura, H.: Identification of protein biochemical functions by similarity search using the molecular surface database eF-site. Protein Sci. 12(8), 1589–1595 (2003)

    Article  Google Scholar 

  11. Connolly, M.L.: The molecular surface package. J. Mol. Graph. 11(2), 139–141 (1993)

    Article  Google Scholar 

  12. Steinkellner, G., et al.: VASCo: computation and visualization of annotated protein surface contacts. BMC Bioinform. 10, 32 (2009)

    Article  Google Scholar 

  13. Fanning, D.W., Smith, J.A., Rose, G.D.: Molecular cartography of globular proteins with application to antigenic sites. Biopolymers 25(5), 863–883 (1986)

    Article  Google Scholar 

  14. Pawlowski, K., Godzik, A.: Surface map comparison: studying function diversity of homologous proteins. J. Mol. Biol. 309(3), 793–806 (2001)

    Article  Google Scholar 

  15. Yang, H., Qureshi, R., Sacan, A.: Protein surface representation and analysis by dimension reduction. Proteome Sci. 10(Suppl. 1), S1 (2012)

    Article  Google Scholar 

  16. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  17. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Found. Trends. Comput. Graph. Vis. 2(2), 105–171 (2006)

    Article  MATH  Google Scholar 

  18. Levy, B., et al.: Least squares conformal maps for automatic texture atlas generation. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 362–371. ACM, San Antonio (2002)

    Google Scholar 

  19. Bertolazzi, P., Guerra, C., Liuzzi, G.: A global optimization algorithm for protein surface alignment. BMC Bioinform. 11, 488 (2010)

    Article  Google Scholar 

  20. Angaran, S., et al.: MolLoc: a web tool for the local structural alignment of molecular surfaces. Nucleic Acids Res. 37(Web Server issue), W565–W570 (2009)

    Google Scholar 

  21. Dong, C.-S., Wang, G.-Z.: Curvatures estimation on triangular mesh. J. Zhejiang Univ. Sci. 6, 128–136 (2005)

    Google Scholar 

  22. Li, L., et al.: DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys. 5, 9 (2012)

    Article  Google Scholar 

  23. Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004)

    Article  Google Scholar 

  24. Shatsky, M., Nussinov, R., Wolfson, H.J.: Optimization of multiple-sequence alignment based on multiple-structure alignment. Proteins 62(1), 209–217 (2006)

    Article  Google Scholar 

  25. Zhao, W., et al.: Face recognition: a literature survey. ACM Comput. Surv. (CSUR) 35(4), 399–458 (2003)

    Article  Google Scholar 

  26. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’reilly, Sebastopol (2008)

    Google Scholar 

  27. Marchitti, S.A., et al.: Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin. Drug Metab. Toxicol. 4(6), 697–720 (2008)

    Article  Google Scholar 

  28. Porter, C.T., Bartlett, G.J., Thornton, J.M.: The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 32(Database issue), D129–D133 (2004)

    Google Scholar 

  29. Huang, B.: MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13(4), 325–330 (2009)

    Article  Google Scholar 

  30. Basu, G., et al.: Electrostatic potential of nucleotide-free protein is sufficient for discrimination between adenine and guanine-specific binding sites. J. Mol. Biol. 342(3), 1053–1066 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Sacan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yang, H., Zhao, C., Sacan, A. (2017). Unfolding the Protein Surface for Pattern Matching. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics