Skip to main content

Evaluating the Impact of Encoding Schemes on Deep Auto-Encoders for DNA Annotation

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

Abstract

Deep Neural Networks show their promise over traditional neural network on DNA genomic analysis. However, due to the uncertainty of DNA sequence data, it performs differently in various encoding schemes. In this article we focus on the comparison of different schemes on various auto-encoder algorithms in DNA annotation and analyze their impacts on deep learning. We also aim to find the best encoding schemes used on deep auto-encoder algorithms for DNA annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, X., Cai, Z., Wan, X.-F., Hoang, T., Goebel, R., Lin, G.: Nucleotide composition string selection in HIV-1 subtyping using whole genomes. Bioinformatics 23(14), 1744–1752 (2007)

    Article  Google Scholar 

  2. Yu, N., Guo, X., Gu, F., Pan, Y.: DNA AS X: an information-coding-based model to improve the sensitivity in comparative gene analysis. In: Harrison, R., Li, Y., Măndoiu, I. (eds.) ISBRA 2015. LNCS, vol. 9096, pp. 366–377. Springer, Cham (2015). doi:10.1007/978-3-319-19048-8_31

    Google Scholar 

  3. Wu, J., Wan, X.F., Xu, L., Lin, G., Cai, Z., Goebel, R.: Identifying a few foot-and-mouth disease virus signature nucleotide strings for computational genotyping. BMC Bioinform. 9, 279 (2008)

    Article  Google Scholar 

  4. Nair, A., Sreenadhan, S.: A coding measure scheme employing electron-ion interaction pseudopotential (EIIP). Bioinformation 1(6), 197–202 (2006)

    Google Scholar 

  5. Arniker, S.B., Kwan, H.K., Law, N.F., Lun, D.P.K.: DNA numerical representation and neural network based human promoter prediction system. In: 2011 Annual IEEE India Conference, pp. 1–4, December 2011

    Google Scholar 

  6. Kauer, G., Blöcker, H.: Applying signal theory to the analysis of biomolecules. Bioinformatics 19(16), 2016–2021 (2003)

    Article  Google Scholar 

  7. Jabbari, K., Bernardi, G.: Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 26(333), 143–149 (2004)

    Article  Google Scholar 

  8. Rosen, G.L.: Signal processing for bibiological-inspired gradient source localization and DNA sequence analysis. Ph.D. dissertation, Georgia Institute of Technology, School of Electrical and Computer Engineering, August 2006

    Google Scholar 

  9. Hinton, G., Dayan, P., Frey, B., Neal, R.: The “wake-sleep” algorithm for unsupervised neural networks. Science 268(5214), 1158–1161 (1995)

    Article  Google Scholar 

  10. Hintonemail, G.E.: Learning multiple layers of representation. Trends Cogn. Sci. 11(10), 428–434 (2007)

    Article  Google Scholar 

  11. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8599–8603, May 2013

    Google Scholar 

  12. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  13. Di Lena, P., Nagata, K., Baldi, P.: Deep architectures for protein contact map prediction. Bioinformatics 28(19), 2449–2457 (2012)

    Article  Google Scholar 

  14. Eickholt, J., Cheng, J.: Predicting protein residueresidue contacts using deep networks and boosting. Bioinformatics 28(23), 3066–3072 (2012)

    Article  Google Scholar 

  15. Leung, M.K.K., Xiong, H.Y., Lee, L.J., Frey, B.J.: Deep learning of the tissue-regulated splicing code. Bioinformatics 30(12), i121–i129 (2014)

    Article  Google Scholar 

  16. Reese, M., Eeckman, F., Kulp, D., Haussler, D.: Improved splice site detection in genie. J. Comput. Biol. 4(3), 311–323 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yu, N., Yu, Z., Gu, F., Pan, Y. (2017). Evaluating the Impact of Encoding Schemes on Deep Auto-Encoders for DNA Annotation. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics