Skip to main content

Nano-Mechanical Tensile Behavior of the SPTA1 Gene in the Presence of Hereditary Hemolytic Anemia-Related Point Mutations

  • Chapter
  • First Online:
  • 1547 Accesses

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 84))

Abstract

A skeletal network of spectrin molecules provides shear stiffness to the red blood cell (RBC) membrane maintaining its shape (by providing elasticity) and thus its stability. There are two α and two β subunits of human spectrin; the α1 and β1 spectrin subunits are encoded SPTA1 and SPTB, respectively. Hereditary elliptocytosis (HE), one of the hereditary blood disorders, results in elliptical/oval, elongated RBCs due to the abnormalities that occur mainly at the atomistic level because of the mutations in SPTA1 and SPTB. In HE, the RBC membrane partly loses its elasticity and this results in a reduced overall durability of RBCs. In its severe forms, hereditary blood disorders can lead to hemolytic anemias when the abnormal RBCs start to depreciate. This study aims to observe mechanically how the abnormalities due to the mutations in SPTA1 gene affect single spectrin molecules. The stiffness of the mutated and normal/wild-type molecules are calculated using Steered Molecular Dynamics (SMD) by subjecting the spectrin α chain to displacements up to tens of nanometers and drawing force-extension maps from these computational experiments. The most common HE mutations being SPTA1 gene missense mutations in the dimer-tetramer self-association site makes it interesting to introduce mutations at the binding site and compare the change in the mechanical response of the mutated molecules to that of the wild-type. Overall, the results presented here show that the nano-mechanical tensile behaviour at the chain-level does not change under the presence of the point mutations. This suggests that the local structural disturbances the mutations cause, will affect the spectrin scaffold on the network-level rather than on the on the single chain level implying more complicated molecular interactional disorders. The work presented here is a part of a larger effort to improve understanding the functional implications of the mechanical and structural properties of proteins starting at the atomistic level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The stiffness values for protein structures from MD simulations are obtained using averaging approaches (i.e. moving average) therefore instead of an exact number, the order of magnitude of the values obtained should be considered.

References

  1. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Science 276, 1109–1112 (1997)

    Article  Google Scholar 

  2. M. Rief, J.M. Fernandez, H.E. Gaub, Phys. Rev. Lett. 81, 4764–4767 (1998)

    Article  Google Scholar 

  3. M. Rief, J. Pascual, M. Saraste, H.E. Gaub, J. Mol. Biol. 286, 553–561 (1999)

    Article  Google Scholar 

  4. T.E. Fisher, A.F. Oberhauser, M. Carrion-Vazquez, P.E. Marszalek, J.M. Fernandez, TIBS 24, 379–384 (1999)

    Google Scholar 

  5. J. Fernandez, P. Marszalek, H. Lu, H. Li, M. Carrion-Vazquez, A. Oberhauser, K. Schulten, Nature 402, 100103 (1999)

    Article  Google Scholar 

  6. P.-F. Lenne, A.J. Raae, S.M. Altmann, M. Saraste, J.K.H. Hörber, FEBS Lett. 476, 124–128 (2000)

    Article  Google Scholar 

  7. E. Paci, M. Karplus, J. Mol. Biol. 288, 441–459 (1999)

    Article  Google Scholar 

  8. S.M. Altmann, R.G. Grünberg, P.F. Lenne, J. Ylänne, A. Raae, K. Herbert, M. Saraste, M. Nilges, J.K. Hörber, Structure 10, 1085–1096 (2002)

    Article  Google Scholar 

  9. R. Law, P. Carl, S. Harper, P. Dalhaimer, D. Speicher, D.E. Discher, Biophys. J. 84, 533–544 (2003)

    Article  Google Scholar 

  10. H.J. Qi, M.C. Boyce, J. Mech. Phys. Solids 52, 2187–2205 (2004)

    Article  Google Scholar 

  11. V. Ortiz, S.O. Nielsen, M.L. Klein, D.E. Discher, J. Mol. Biol. 349, 638–647 (2005)

    Article  Google Scholar 

  12. H.J. Qi, C. Ortiz, M.C. Boyce, Trans. ASME, J. Eng. Mater. Technol. 128, 509–518 (2006)

    Google Scholar 

  13. C.P. Johnson, H. Tang, C. Carag, D.W. Speicher, D.E. Discher, Science 317, 663–666 (2007)

    Article  Google Scholar 

  14. M. Arslan, M.C. Boyce, H.J. Qi, C. Ortiz, J. Appl. Mech. 75, 536–543 (2008)

    Article  Google Scholar 

  15. D.W. Speicher, J.S. Morrow, W.J. Knowles, V.T. Marchesi, J. Biol. Chem. 257, 9093–9101 (1982)

    Google Scholar 

  16. D.M. Shotton, B.E. Burke, D. Branton, J. Mol. Biol. 131, 303–329 (1979)

    Article  Google Scholar 

  17. A.M. McGough, R. Josephs, Proc. Natl. Acad. Sci. U.S.A. 87, 5208–5212 (1990)

    Article  Google Scholar 

  18. T.L. Coetzer, K. Sahr, J. Prchal, H. Blacklock, L. Peterson, R. Koler, J. Doyle, J. Manaster, J. Palek, J. Clin. Invest. 88, 743–749 (1991)

    Article  Google Scholar 

  19. P.G. Gallagher, Semin. Hematol. 41, 142–164 (2004)

    Article  Google Scholar 

  20. M. Gaetani, S. Mootien, S. Harper, P.G. Gallagher, D.W. Speicher, Blood 111(12), 5712–5720 (2008)

    Article  Google Scholar 

  21. Z. Zhang, S.A. Weed, P.G. Gallagher, J.S. Morrow, Blood 98, 1645–1653 (2001)

    Article  Google Scholar 

  22. J.J. Ipsaro, S.L. Harper, T.E. Messick, R. Marmorstein, A. Mondragón, D.W. Speicher, Blood 115, 4843–4852 (2010)

    Article  Google Scholar 

  23. A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C., Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B, 102, 3586–3616 (1998)

    Google Scholar 

  24. M.T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L.V. Kale´, R.D. Skeel, K. Schulten, Int. J. Supercomput. Appl. High Perform. Comput. 10, 251–268 1996

    Google Scholar 

  25. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  26. H. Lu, B. Isralewitz, A. Krammer, V. Vogel, K. Schulten, Biophys. J. 75, 662–671 (1998)

    Article  Google Scholar 

  27. B. Isralewitz, J. Baudry, J. Gullingsrud, D. Kosztin, K. Schulten, J. Mol. Graph. Model. 19, 13–25 (2001)

    Article  Google Scholar 

  28. S. Park, F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, J. Chem. Phys. 119, 3559 (2003)

    Article  Google Scholar 

  29. M. Schaefer, C. Froemmel, J. Mol. Biol. 216, 1045–1066 (1990)

    Article  Google Scholar 

  30. W.C. Still, A. Tempczyk, R.C. Hawley, T. Hendrickson, J. Am. Chem. Soc. 112, 6127–6129 (1990)

    Article  Google Scholar 

  31. G.D. Hawkins, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. 100, 19824–19839 (1996)

    Article  Google Scholar 

  32. J. Srinivasan, M.W. Trevathan, P. Beroza, D.A. Case, Theor. Chem. Acc. 101, 426–434 (1999)

    Article  Google Scholar 

  33. A. Onufriev, D. Bashford, D.A. Case, J. Phys. Chem. 104, 3712–3720 (2000)

    Article  Google Scholar 

  34. A. Onufriev, D. Bashford, D.A. Case, Proteins: Struct., Func., Gen., 55, 383–394 (2004)

    Google Scholar 

  35. W. Cornell, R. Abseher, M. Nilges, D.A. Case, J. Mol. Graph. Model. 19, 136–145 (2001)

    Article  Google Scholar 

  36. Z. Qin, M.J. Buehler, Phys. Rev. E 82, 061906 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey), grant no: 114Z733 and TED University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melis Hunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hunt, M. (2018). Nano-Mechanical Tensile Behavior of the SPTA1 Gene in the Presence of Hereditary Hemolytic Anemia-Related Point Mutations. In: Wriggers, P., Lenarz, T. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-59548-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59548-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59547-4

  • Online ISBN: 978-3-319-59548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics