Skip to main content

The Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms—Method and Clinical Relevance

  • Chapter
  • First Online:
Biomedical Technology

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 84))

Abstract

An Abdominal Aortic Aneurysm (AAA) is an enlargement of the infrarenal aorta, a serious condition whose clinical treatment requires assessing its risk of rupture. This chapter reviews the current state of the Biomechanical Rupture Risk Assessment (BRRA), a non-invasive diagnostic method to calculate such AAA rupture risk, and emphasizes on constitutive modeling of AAA tissues. Histology and mechanical properties of the normal and aneurysmatic walls are summarized and related to proposed constitutive descriptions. Models for the passive vessel wall as well as their adaptation in time are discussed. Reported clinical BRRA validation studies are summarized and their clinical relevance is discussed. Despite open problems in AAA biomechanics, like robust modeling vascular tissue adaptation to mechanical and biochemical environments, a significant body of current validation evidence suggests integrating the BRRA method into the clinical decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. Greenhalgh, J.T. Powell, Endovascular repair of abdominal aortic aneurysm. N. Engl. J. Med. 358, 494–501 (2008)

    Google Scholar 

  2. The U.K. Small, Aneurysm Trial Participants, Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 352, 1649–1655 (1998)

    Article  Google Scholar 

  3. R.C. Darling, C.R. Messina, D.C. Brewster, L.W. Ottinger, Autopsy study of unoperated Abdominal Aortic Aneurysms. Circulation 56, 161–164 (1977) (II suppl)

    Google Scholar 

  4. S.C. Nicholls, J.B. Gardner, M.H. Meissner, H.K. Johansen, Rupture in small abdominal aortic aneurysms. J. Vasc. Surg. 28, 884–888 (1998)

    Article  Google Scholar 

  5. M.F. Fillinger, S.P. Marra, M.L. Raghavan, F.E. Kennedy, Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37, 724–732 (2003)

    Article  Google Scholar 

  6. T.C. Gasser, M. Auer, F. Labruto, J. Swedenborg, J. Roy, Biomechanical rupture risk assessment of abdominal aortic aneurysms. Model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40, 176–185 (2010)

    Google Scholar 

  7. T.C. Gasser, A. Nchimi, J. Swedenborg, J. Roy, N. Sakalihasan, D. Böckler, A. Hyhlik-Dürr, A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur. J. Vasc. Endovasc. Surg. 47, 288–295 (2014)

    Article  Google Scholar 

  8. A. Maier, M.W. Gee, C. Reeps, J. Pongratz, H.H. Eckstein, W.A. Wall, A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38, 3124–3134 (2010)

    Article  Google Scholar 

  9. J.P. Vande Geest, E.S. DiMartino, A. Bohra, M.S. Makaroun, D.A. Vorp, A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. N.Y. Acad. Sci. 1085, 11–21 (2006)

    Google Scholar 

  10. M.L. Raghavan, D.A. Vorp, Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33, 475–482 (2000)

    Article  Google Scholar 

  11. M. Truijers, J.A. Pol, L.J. Schultzekool, S.M. van Sterkenburg, M.F. Fillinger, J.D. Blankensteijn, Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33, 401–407 (2007)

    Google Scholar 

  12. A.K. Venkatasubramaniam, M.J. Fagan, T. Mehta, K.J. Mylankal, B. Ray, G. Kuhan, I.C. Chetter, P.T. McCollum, A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Surg. 28, 168–176 (2004)

    Google Scholar 

  13. E. Choke, G. Cockerill, W.R. Wilson, S. Sayed, J. Dawson, I. Loftus, M.M. Thompson, A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 30, 227–244 (2005)

    Article  Google Scholar 

  14. M. Auer, T.C. Gasser, Reconstruction and finite element mesh generation of Abdominal Aortic Aneurysms from computerized tomography angiography data with minimal user interaction. IEEE T. Med. Imaging 29, 1022–1028 (2010)

    Article  Google Scholar 

  15. S.S. Hans, O. Jareunpoon, M. Balasubramaniam, G.B. Zelenock, Size and location of thrombus in intact and ruptured Abdominal Aortic Aneurysms. J. Vasc. Surg. 41, 584–588 (2005)

    Article  Google Scholar 

  16. J.C. Simo, R.L. Taylor, Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Meth. Appl. Mech. Eng. 85, 273–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. R.G. Sargent, Verification and Validation Of Simulation Models (2011) pp. 183–198

    Google Scholar 

  18. E.S. DiMartino, D.A. Vorp, Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic wall stress. Ann. Biomed. Eng. 31, 804–809 (2003)

    Article  Google Scholar 

  19. S. Polzer, J. Bursa, T.C. Gasser, R. Staffa, R. Vlachovsky, Numerical implementation to predict residual strains from the homogeneous stress hypothesis with application to abdominal aortic aneurysms. Ann. Biomed. Eng. 41, 1516–1527 (2013)

    Google Scholar 

  20. R. Adolph, D.A. Vorp, D.L. Steed, M.W. Webster, M.V. Kameneva, S.C. Watkins, Cellular content and permeability of intraluminal thrombus in Abdominal Aortic Aneurysm. J. Vasc. Surg. 25, 916–926 (1997)

    Article  Google Scholar 

  21. T.C. Gasser, G. Görgülü, M. Folkesson, J. Swedenborg, Failure properties of intra-luminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48, 179–188 (2008)

    Article  Google Scholar 

  22. A. Ayyalasomayajula, J.P. Vande, Geest, B.R. Simon, Porohyperelastic finite element modeling of abdominal aortic aneurysms. J. Biomech. 132, 371–379 (2010)

    Google Scholar 

  23. S. Polzer, T.C. Gasser, B. Markert, J. Bursa, P. Skacel, Impact of poroelasticity of the intraluminal thrombus on the wall stress of abdominal aortic aneurysms. Biomed. Eng. 11 (2012). doi:10.1186/1475-925X-11-62

  24. M. Bäck, T.C. Gasser, J.-B. Michel, G. Caligiuri, Review. biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res. 99, 232–241 (2013)

    Article  Google Scholar 

  25. M.R. Roach, A.C. Burton, The reason for the shape of the distensibility curve of arteries. Can. J. Biochem. Physiol. 35, 681–690 (1957)

    Article  Google Scholar 

  26. J. Liao, I. Vesely, Skewness angle of interfibrillar proteoglycans increases with applied load on mitral valve chordae tendineae. J. Biomech. 40, 390–398 (2007)

    Article  Google Scholar 

  27. P.S. Robinson, T.F. Huang, E. Kazam, R.V. Iozzo, D.E. Birk, L.J. Soslowsky, Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. J. Biomech. Eng. 127, 181–185 (2005)

    Article  Google Scholar 

  28. J.E. Scott, Elasticity in extracellular matrix ‘shape modules’ of tendon, cartilage, etc. a sliding proteoglycan-filament model. J. Physiol. 553(2), 335–343 (2003)

    Article  Google Scholar 

  29. J.E. Scott, Cartilage is held together by elastic glycan strings. Physiological and pathological implications. Biorheology 45, 209–217 (2008)

    Google Scholar 

  30. R. Nissen, G.J. Cardinale, S. Udenfriend, Increased turnover of arterial collagen in hypertensive rats. Proc. Natl. Acad. Sci. USA 75, 451–453 (1978)

    Article  Google Scholar 

  31. W.W. Nichols, M.F. O’Rourke, C. Vlachopoulos, McDonald’s blood flow in arteries, in Theoretical, Experimental and Clinical Principles, 6th edn. (Arnold, London, 2011)

    Google Scholar 

  32. M.K. O’Connell, S. Murthy, S. Phan, C. Xu, J. Buchanan, R. Spilker, R.L. Dalman, C.K. Zarins, W. Denk, C.A. Taylor, The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3d confocal and electron microscopy imaging. Matrix Biol. 27, 171–181 (2008)

    Article  Google Scholar 

  33. Z. Werb, M.J. Banda, J.H. McKerrow, R.A. Sandhaus, Elastases and elastin degradation. J. Invest. Dermatol. 79, 154–159 (1982)

    Article  Google Scholar 

  34. T.C. Gasser, S. Gallinetti, X. Xing, C. Forsell, J. Swedenborg, J. Roy, Spatial orientation of collagen fibers in the abdominal aortic aneurysm wall and its relation to wall mechanics. Acta Biomater. 8, 3091–3103 (2012)

    Article  Google Scholar 

  35. J.M. Clark, S. Glagov, Transmural organization of the arterial media: the lamellar unit revisited. Arteriosclerosis 5, 19–34 (1985)

    Article  Google Scholar 

  36. K.P. Dingemans, P. Teeling, J.H. Lagendijk, A.E. Becker, Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258, 1–14 (2000)

    Article  Google Scholar 

  37. T.E. Carew, R.N. Vaishnav, D.J. Patel, Compressibility of the arterial wall. Circ. Res. 23, 61–68 (1968)

    Article  Google Scholar 

  38. J.P. Vande Geest, M.S. Sacks, D.A. Vorp, The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006)

    Google Scholar 

  39. D.J. Patel, J.S. Janicki, T.E. Carew, Static anisotropic elastic properties of the aorta in living dogs. Circ. Res. 25, 765–779 (1969)

    Article  Google Scholar 

  40. C. S. Roy. The elastic properties of the arterial wall. J. Physiol. 3, 125–159 (1880–82)

    Google Scholar 

  41. Z.J. Samila, S.A. Carter, The effect of age on the unfolding of elastin lamellae and collagen fibers with stretch in human carotid arteries. Can. J. Physiol. Pharm. 59, 1050–1057 (1981)

    Article  Google Scholar 

  42. H. Wolinsky, S. Glagov, Structural basis for the static mechanical properties of the aortic media. Circ. Res. 14, 400–413 (1964)

    Article  Google Scholar 

  43. D.H. Bergel, The static elastic properties of the arterial wall. J. Physiol. 156, 445–457 (1961)

    Article  Google Scholar 

  44. C.J. Choung, Y.C. Fung, Residual stress in arteries, in G.W. Schmid-Schoenbein, S.L. Woo, B.W. Zweifach, ed. by Frontiers in Biomechanics 1(986) pp. 117–129

    Google Scholar 

  45. Y.C. Fung, What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19, 237–249 (1991)

    Article  Google Scholar 

  46. A. Rachev, S.E. Greenwald, Residual strains in conduit arteries. J. Biomech. 36, 661–670 (2003)

    Article  Google Scholar 

  47. R.N. Vaishnav, J. Vossoughi, Residual stress and strain in aortic segments. J. Biomech. 20, 235–239 (1987)

    Article  Google Scholar 

  48. J. Vossoughi, Longitudinal residual strains in arteries, in Proceedings of the 11th Southern Biomedical Engineering Conference, Memphis, TN, 1992. 2–4 Oct 1992, pp. 17–19

    Google Scholar 

  49. H.W. Weizsäcker, H. Lambert, K. Pascale, Analysis of the passive mechanical properties of rat carotid arteries. J. Biomech. 16, 703–715 (1983)

    Article  Google Scholar 

  50. T.T. Tanaka, Y.C. Fung, Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7, 357–370 (1974)

    Article  Google Scholar 

  51. J.L. Emery, J.H. Omens, A.D. McCulloch, Strain softening in rat left ventricular myocardium. J. Biomech. Eng. 119, 6–12 (1997)

    Article  Google Scholar 

  52. H.S. Oktay, T. Kang, J.D. Humphrey, G.G. Bishop, Changes in the mechanical behavior of arteries following balloon angioplasty, in ASME 1991 Biomechanics Symposium, AMD-Vol. 120 (American Society of Mechanical Engineers, 1991)

    Google Scholar 

  53. N.V. Salunke, L.D.T. Topoleski, Biomechanics of atherosclerotic plaque. Crit. Rev. Biomed. Eng. 25, 243–285 (1997)

    Google Scholar 

  54. P.F. Davies, Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995)

    Google Scholar 

  55. P. Fridez, A. Makino, H. Miyazaki, J.J. Meister, K. Hayashi, N. Stergiopulos, Short-term biomechanical adaptation of the rat carotid to acute hypertention: contribution of smooth muscle. Ann. Biomed. Eng. 29, 26–34 (2001)

    Article  Google Scholar 

  56. M.A. Zulliger, A. Rachev, N. Stergiopulos, A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am. J. Physiol. Heart Circ. Physiol. 287, H1335–H1343 (2004)

    Article  Google Scholar 

  57. Y. Castier, R.P. Brandes, G. Leseche, A. Tedgui, S. Lehoux, p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling. Circ. Res. 97, 533–540 (2005)

    Article  Google Scholar 

  58. R.J. Guzman, K. Abe, C.K. Zarins, Flow-induced arterial enlargement is inhibited by suppression of nitric oxide synthase activity in vivo. Surgery 122, 273–279 (1997)

    Article  Google Scholar 

  59. T. Matsumoto, K. Hayashi, Stress and strain distribution in hypertensive and normotensive rat aorta considering residual strain. J. Biomech. 118, 62–73 (1996)

    Article  Google Scholar 

  60. H. Wolinsky, Effects of hypertension and its reversal on the thoracic aorta of male and female rats. Circ. Res. 28, 622–637 (1971)

    Article  Google Scholar 

  61. R.L. Gleason, E. Wilson, J.D. Humphrey, Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extension. J. Biomech. 40, 766–776 (2007)

    Article  Google Scholar 

  62. M.J. Davis, Aortic aneurysm formation: lessons from human studies and experimental models. Circulation 98, 193–195 (1998)

    Article  Google Scholar 

  63. M. Kazi, J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin, J. Swedenborg, Influence of intraluminal thrombus on structural and cellular composition of Abdominal Aortic Aneurysm wall. J. Vasc. Surg. 38, 1283–1292 (2003)

    Article  Google Scholar 

  64. J.B. Michel, J.L. Martin-Ventura, J. Egido, N. Sakalihasan, V. Treska, J. Lindholt, E. Allaire, U. Thorsteinsdottir, G. Cockerill, J. Swedenborg, Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. (2011)

    Google Scholar 

  65. R.J. Rizzo, W.J. McCarthy, S.N. Dixit, M.P. Lilly, V.P. Shively, W.R. Flinn, J.S.T. Yao, Collagen types and matrix protein content in human abdominal aortic aneurysms. J. Vasc. Surg. 10, 365–373 (1989)

    Article  Google Scholar 

  66. J. Biasetti, T.C. Gasser, M. Auer, U. Hedin, F. Labruto, Hemodynamics conditions of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasize on thrombus formation. Ann. Biomed. Eng. 38, 380–390 (2009)

    Article  Google Scholar 

  67. J. Biasetti, F. Hussain, T.C. Gasser, Blood flow and coherent vortices in the normal and aneurysmatic aortas. A fluid dynamical approach to Intra-Luminal Thrombus formation. J. R. Soc. Interface 8, 1449–1461 (2011)

    Article  Google Scholar 

  68. J. Biasetti, P.G. Spazzini, T.C. Gasser, An integrated fluido-chemical model towards modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front. Physiol. 3, article 266 (2011)

    Google Scholar 

  69. J.P. Vande Geest, M.S. Sacks, D.A. Vorp, A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms J. Biomech. 39, 2347–2354 (2006)

    Google Scholar 

  70. T.C. Gasser, G. Martufi, M. Auer, M. Folkesson, J. Swedenborg, Micro-mechanical characterization of intra-luminal thrombus tissue from abdominal aortic aneurysms. Ann. Biomed. Eng. 38, 371–379 (2010)

    Article  Google Scholar 

  71. M. Folkesson, A. Silveira, P. Eriksson, J. Swedenborg, Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Atherosclerosis 218, 294–299 (2011)

    Article  Google Scholar 

  72. J. Swedenborg, P. Eriksson, The intraluminal thrombus as a source of proteolytic activity. Ann. N.Y. Acad. Sci. 133–138, 2006 (1085)

    Google Scholar 

  73. D.A. Vorp, P.C. Lee, D.H. Wang, M.S. Makaroun, E.M. Nemoto, S. Ogawa, M.W. Webster, Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34, 291–299 (2001)

    Article  Google Scholar 

  74. P. Erhart, C. Grond-Ginsbach, M. Hakimi, F. Lasitschka, S. Dihlmann, D. Böckler, A. Hyhlik-Dürr, Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J. Endovas. Ther. 21, 556–564 (2014)

    Article  Google Scholar 

  75. C. Reeps, A. Maier, J. Pelisek, F. Hartl, V. Grabher-Maier, W.A. Wall, M. Essler, H.-H. Eckstein, M.W. Gee, Measuring and modeling patient-specific distributions of material properties in abdominal aortic wall. Biomech. Model. Mechanobio. 12, 717–733 (2013)

    Article  Google Scholar 

  76. T.C. Gasser, Biomechanical rupture risk assessment: a consistent and objective decision-making tool for abdominal aortic aneurysm patients. AORTA (2016). doi:10.12945/j.aorta.2015.15.030 (in press)

  77. W.-I. Yang M.-K. Kang S. Park J.-W. Ha Y. Jang N. Chung C.Y. Shim, I.J. Cho, Central aortic stiffness and its association with ascending aorta dilation in subjects with a bicuspid aortic valve. J. Am. Soc. Echoradiogr. 24, 847–852 (2011)

    Google Scholar 

  78. C. Forsell, H.M. Björck, P. Eriksson, A. Franco-Cereceda, T.C. Gasser, Biomechanical properties of the thoracic aneurysmal wall; differences between bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV) patients. Ann. Thorac Surg. 98, 65–71 (2014)

    Article  Google Scholar 

  79. C. Forsell, T. C. Gasser, J. Swedenborg, J. Roy, The quasi-static failure properties of the abdominal aortic aneurysm wall estimated by a mixed experimental-numerical approach. Ann. Biomed. Eng. 11 (2012). doi:10.1007/s10439-012-0712-3

  80. A. Maier, M. Essler, M.W. Gee, H.H. Eckstein, W.A. Wall, C. Reeps, Correlation of biomechanics to tissue reaction in aortic aneurysms assessed by finite elements and [18f]-fluorodeoxyglucose-pet/ct. Int. J. Numer. Meth. Biomed. Eng. 28, 456–471 (2012)

    Article  MathSciNet  Google Scholar 

  81. V. Marque, P. Kieffer, B. Gayraud, I. Lartaud-Idjouadiene, F. Ramirez, J. Atkinson, Aortic wall mechanics and composition in a transgenic mouse model of Marfan syndrome. Arterioscl. Thromb. Vasc. Biol. 21, 1184–1189 (2001)

    Article  Google Scholar 

  82. A. Romo, P. Badel, A. Duprey, J.P. Favre, S. Avril, In vitro analysis of localized aneurysm rupture. J. Biomech. 189, 607–616 (2014)

    Article  Google Scholar 

  83. M.L. Raghavan, M.M. Hanaoka, J.A. Kratzberg, M. de Lourdes, Higuchi, E.S. da Silva, Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J. Biomech. 44, 2501–2507 (2011)

    Google Scholar 

  84. J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, New York, 1998)

    MATH  Google Scholar 

  85. R.W. Ogden, Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A A326, 565–584 (1972)

    Article  MATH  Google Scholar 

  86. O.H. Yeoh, Some forms of strain energy functions for rubber. Rubber Chem. Technol. 66, 754–771 (1993)

    Article  Google Scholar 

  87. H. Demiray, A note on the elasticity of soft biological tissues. J. Biomech. 5, 309–311 (1972)

    Article  Google Scholar 

  88. Y.C. Fung, K. Fronek, P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237, H620–H631 (1979)

    Google Scholar 

  89. C.A. Basciano, C. Kleinstreuer, Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall. J. Biomech. Eng. 131(021009), 11 (2009)

    Google Scholar 

  90. S. Celi , S. Berti, Biomechanics and fe modelling of aneurysm: Review and advances in computational models, in: Y. Murai, ed. by Aneurysm, chapter 1. InTech (2012)

    Google Scholar 

  91. H.S. Choi, R.P. Vito, Two-dimensional stress-strain relationship for canine pericardium. J. Biomech. Eng. 112, 153–159 (1990)

    Article  Google Scholar 

  92. C.J. Chuong, Y.C. Fung, Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105, 268–274 (1983)

    Article  Google Scholar 

  93. T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  94. G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61, 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  95. C.O. Horgan, G. Saccomandi, A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomech. Model. Mechanobio. 1, 251–266 (2003)

    Article  Google Scholar 

  96. J.D. Humphrey, K.R. Rajagopal, A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Meth. Appl. Sci. 12, 407–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  97. F. Riveros, S. Chandra, E.A. Finol, T.C. Gasser, J.F. Rodriguez, A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic aaa passive mechanics. Ann. Biomed. Eng. 41, 694–708 (2013)

    Article  Google Scholar 

  98. J.F. Rodríguez, C. Ruiz, M. Doblaré, G.A. Holzapfel, Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130, 021023 (2008)

    Google Scholar 

  99. D.P. Sokolis, E.M. Kefaloyannis, M. Kouloukoussa, E. Marinos, H. Boudoulas, P.E. Karayannacos, A structural basis for the aortic stressstrain relation in uniaxial tension. J. Biomech. 39, 1651–1662 (2006)

    Google Scholar 

  100. K. Takamizawa, K. Hayashi, Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7–17 (1987)

    Article  Google Scholar 

  101. R.N. Vaishnav, J.T. Young, J.S. Janicki, D.J. Patel, Nonlinear anisotropic elastic properties of the canine aorta. Biophys. J. 12, 1008–1027 (1972)

    Article  Google Scholar 

  102. S. Polzer, T.C. Gasser, C. Forsell, H. Druckmullerova, M. Tichy, R. Vlachovsky, J. Bursa, Automatic identification and validation of planar collagen organization in the aorta wall with application to abdominal aortic aneurysm. Micros. Microanal. 19, 1395–1404 (2013)

    Article  Google Scholar 

  103. Y. Lanir, Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  104. G. Martufi, T.C. Gasser, A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels. J. Biomech. 44, 2544–2550 (2011)

    Article  Google Scholar 

  105. H. Miyazaki, K. Hayashi, Tensile tests of collagen fibers obtained from the rabbit patellar tendon. Biomed. Microdevices 2, 151–157 (1999)

    Article  Google Scholar 

  106. Z.L. Shen, M.R. Dodge, Kahn, R. Ballarini, S.J. Eppell, Stress-strain experiments on individual collagen fibrils. Biophys. J. 95, 3956–3963 (2008)

    Google Scholar 

  107. F.L. Wuyts, V.J. Vanhuyse, G.J. Langewouters, W.F. Decraemer, E.R. Raman, S. Buyle, Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys. Med. Biol. 40, 1577–1597 (1995)

    Article  Google Scholar 

  108. M.A. Zulliger, P. Fridez, K. Hayashi, N. Stergiopulos, A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37, 989–1000 (2004)

    Article  Google Scholar 

  109. S. Polzer, T.C. Gasser, K. Novak, V. Man, M. Tichy, P. Skacel, J. Bursa, Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomater. 14, 133–145 (2015)

    Article  Google Scholar 

  110. G. Martufi, T.C. Gasser, Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. J. R. Soc. Interface 9, 3366–3377 (2012)

    Article  Google Scholar 

  111. S. Loerakker, C. Obbink-Huizer, F.P.T. Baaijens, A physically motivated constitutive model for cell-mediated compaction and collagen remodeling in soft tissues. Biomech. Model. Mechanobio. 13, 985–1001 (2014)

    Article  Google Scholar 

  112. R.L. Taylor, FEAP—A Finite Element Analysis Program, Version 8.2 User Manual. University of California at Berkeley, Berkeley, California, 2007

    Google Scholar 

  113. A. Hyhlik-Dürr, T. Krieger, P. Geisbüsch, D. Kotelis, T. Able, D. Böckler, Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3d finite element models. J. Endovas. Ther. 18, 289–298 (2011)

    Article  Google Scholar 

  114. A. Teutelink, E. Cancrinus, D. van de Heuvel, F. Moll, J.P. de Vries, Preliminary intraobserver and interobserver variability in wall stress and rupture risk assessment of abdominal aortic aneurysms using a semiautomatic finite element model. J. Vasc. Surg. 55, 326–330 (2012)

    Article  Google Scholar 

  115. C. Xu, D.L. Pham, J.L. Prince, Image segmentation using deformable models, in Handbook of Medical Imaging, vol. 2, Medical Image Processing and Analysis, ed. by M. Sonka, J.M. Fitzpatrick (Spie press, Bellingham, 2000), pp. 129–174

    Google Scholar 

  116. S. Khosla, D.R. Morris, J.V. Moxon, P.J. Walker, T.C. Gasser, J. Golledge, Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br. J. Surg. 101, 1350–1357 (2014)

    Article  Google Scholar 

  117. J.P. Vande Geest, D.H.J. Wang, S.R. Wisniewski, M.S. Makaroun, D.A. Vorp, Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34, 1098–1106 (2006)

    Google Scholar 

  118. P. Erhart, J. Roy, J-P. de Vries, M. Lindquist Liljeqvist, C. Grond-Ginsbach, A. Hyhlik-Dürr, D. Böckler, Prediction of rupture sites in abdominal aortic aneurysms after finite element analysis J. Endovas. Ther. 23, 121–124 (2016)

    Google Scholar 

  119. B.G. Derubertis, S.M. Trocciola, E.J. Ryer, F.M. Pieracci, J.F. McKinsey, P.L. Faries, K.C. Kent, Vascular endothelium responds to fluid shear stress gradients. J. Vasc. Surg. 46, 630–635 (2007)

    Article  Google Scholar 

  120. M. Heikkinen, J. Salenius, R. Zeitlin, J. Saarinen, V. Suominen, R. Metsanoja, O. Auvinen, The fate of aaa patients referred electively to vascular surgical unit. Scand. J. Surg. 91, 354–352 (2002)

    Article  Google Scholar 

  121. E. Larsson, Abdominal Aortic Aneurysm—Gender Aspects on Risk Factors and Treatment. PhD Thesis, Karolinska Institute, Stockholm, Sweden, 2011

    Google Scholar 

  122. J.P. Vande Geest, E.D. Dillavou, E.S. DiMartino, M. Oberdier, A. Bohra, M.S. Makaroun, D.A. Vorp, Gender-related differences in the tensile strength of abdominal aortic aneurysm. Ann. N.Y. Acad. Sci. 1085, 400–402 (2006)

    Google Scholar 

  123. N. Sakalihasan, H. Van Damme, P. Gomez, P. Rigo, C.M. Lapiere, B. Nusgens, R. Limet, Positron emission tomography (pet) evaluation of abdominal aortic aneurysm (aaa). Eur. J. Vasc. Endovasc. Surg. 23, 431–436 (2002)

    Google Scholar 

  124. A. Nchimi, J.-P. Cheramy-Bien, T.C. Gasser, G. Namur, P. Gomez, A. Albert, L. Seidel, J.O. Defraigne, N. Labropoulos, N. Sakalihasan, Multifactorial relationship between 18f-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ. Cardiovasc. Imaging 7, 82–91 (2014)

    Article  Google Scholar 

  125. M. Lindquist Liljeqvist, R.Hultgren, T.C. Gasser, J. Roy, Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk. J. Vasc. Surg. 63, 1434–1442 (2016)

    Google Scholar 

  126. G. Martufi, M. Lindquist Liljeqvist, N. Sakalihasan, G. Panuccio, R. Hultgren, J. Roy, T.C. Gasser, Local diameter, wall stress and thrombus thickness influence the local growth of abdominal aortic aneurysms. J. Endovas. Ther. (2016) (in press)

    Google Scholar 

  127. G. Martufi, J. Roy, J. Swedenborg, N. Sakalihasan, G. Panuccio, T.C. Gasser, Multidimensional growth measurements of abdominal aortic aneurysms. J. Vasc. Surg. (2013) (in press)

    Google Scholar 

  128. A. Rachev, S.E. Greenwald, T. Shazly, Are geometrical and structural variations along the length of the aorta governed by a principle of “Optimal Mechanical Operation”? J. Biomech. Eng. 135 (2013). doi:10.1115/SBC2013-14427

  129. M. Kroon, G.A. Holzapfel, A theoretical model for fibroblast-controlled growth of saccular cerebral aneurysms. J. Theor. Biol. 257, 73–83 (2009)

    Article  MathSciNet  Google Scholar 

  130. K.Y. Volokh, D.A. Vorp, A model of growth and rupture of abdominal aortic aneurysm. J. Biomech. 41, 1015–1021 (2008)

    Article  Google Scholar 

  131. P.N. Watton, N.A. Hill, Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech. Model. Mechanobio. 8, 25–42 (2009)

    Article  Google Scholar 

  132. J.S. Wilson, S. Baek, J.D. Humphrey, Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface (2012) (ahead of print)

    Google Scholar 

  133. S. Zeinali-Davarani, S. Baek, Medical image-based simulation of abdominal aortic aneurysm growth. Mech. Res. Commun. 42, 107–117 (2012)

    Article  Google Scholar 

  134. T.C. Gasser, Patient-specific computational modeling, in Lecture Notes in Computational Vision and Biomechanics, chapter Bringing Vascular Biomechanics into Clinical Practice. Simulation-Based Decisions for Elective Abdominal Aortic Aneurysms Repair (Springer, 2012) pp. 1–37

    Google Scholar 

  135. T.C. Gasser, Aorta—Mechanical properties, histology, and biomechanical modeling. ed. by Yohan Payan, Jacques Ohayon in Biomechanics of Living Organs. Hyperelastic Constitutive Laws for Finite Element Modeling. Academic Press (2017) (Chapter 7)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Christian Gasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gasser, T.C. (2018). The Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms—Method and Clinical Relevance. In: Wriggers, P., Lenarz, T. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-59548-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59548-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59547-4

  • Online ISBN: 978-3-319-59548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics