Skip to main content

Computational Comparison Between Newtonian and Non-Newtonian Blood Rheologies in Stenotic Vessels

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 84))

Abstract

This work aims at investigating the influence of non-Newtonian blood rheology on the hemodynamics of 3D patient-specific stenotic vessels, by means of a comparison of some numerical results with the Newtonian case. In particular, we consider two carotid arteries with severe stenosis and a stenotic coronary artery treated with a bypass graft, in which we virtually vary the degree of stenosis. We perform unsteady numerical simulations based on the Finite Element method using the Carreau-Yasuda model to describe the non-Newtonian blood rheology. Our results show that velocity, vorticity and wall shear stress distributions are moderately influenced by the non-Newtonian model in case of stenotic carotid arteries. On the other hand, we observed that a non-Newtonian model seems to be important in case of stenotic coronary arteries, in particular to compute the relative residence time which is greatly affected by the rheological model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We recall that the vorticity, \(\mathbf{\omega }\), is defined as \(\mathbf{\omega } = \nabla \times \mathbf{u}\).

References

  1. O.K. Baskurt, H.J. Meiselman, Blood rheology and hemodynamics. Semin. Thromb. Hemost. 29(5), 435–450 (2003)

    Article  Google Scholar 

  2. N. Bessonov, A. Sequeira, S. Simakov, Y. Vassilevskii, V. Volpert, Methods of blood flow modelling. Math. Model. Nat. Phenom. 11(1), 1–25 (2006)

    Article  MathSciNet  Google Scholar 

  3. Y.I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Biorheology 28, 241–262 (1991)

    Google Scholar 

  4. S.S. Shibeshi, W.E. Collins, The rheology of blood flow in a branched arterial system. Appl. Rheo. 15(6), 398–405 (2005)

    Google Scholar 

  5. F.M. Box, R.J. van der Geest, M.C. Rutten, J.H. Reiber, The influence of flow, vessel diameter, and non-Newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow. Invest. Radiol. 40(5), 277–294 (2005)

    Google Scholar 

  6. J. Boyd, J. Buick, Comparison of Newtonian and non-Newtonian flows in a two dimensional carotid artery model using the lattice Boltzmann method. Phys. Med. Biol. 52(20), 6215–6228 (2007)

    Article  Google Scholar 

  7. F.J.H. Gijsen, F.N. van de Vosse, J.D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32(6), 601–608 (1999)

    Google Scholar 

  8. K. Perktold, R.O. Peter, M. Resch, G. Langs, Pulsatile non-Newtonian blood flow in a three-dimensional carotid bifurcation models: a numerical sudy of flow phenomena under different bifurcation angles. J. Biomed. Eng. 13(6), 507–515 (1991)

    Article  Google Scholar 

  9. A. Razavi, E. Shirani, M.R. Sadeghi, Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44(11), 2021–2030 (2011)

    Article  Google Scholar 

  10. C.M. Shirmer, A.M. Malek, Computational fluid dynamic characterization of carotid bifurcation stenosis in patient-based geometries. Brain Behav. 2(1), 45–52 (2012)

    Google Scholar 

  11. J.S. Stroud, S.A. Berger, D. Saloner, Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124(1), 9–20 (2002)

    Article  Google Scholar 

  12. A. Valencia, A. Zarate, M. Galvez, L. Badilla, Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm. Int. J. Numer. Method Fluid 50, 751–764 (2006)

    Google Scholar 

  13. J. Chen, X.-Y. Lu, W. Wang, Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J. Biomech. 39, 1983–1995 (2006)

    Google Scholar 

  14. W.W. Jeong, K. Rhee, Effects of surface geometry and non-Newtonian viscosity on the flow field in arterial stenoses. J. Mech. Sci. Technol. 23, 2424–2433 (2009)

    Google Scholar 

  15. B.M. Johnston, P.R. Johnston, S. Corney, D. Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39, 1116–1128 (2006)

    Article  Google Scholar 

  16. F. Kabinejadian, D.N. Ghista, Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Med. Eng. Phys. 34, 860–872 (2012)

    Google Scholar 

  17. B. Liu, D. Tang, Influence of non-Newtonian properties of blood on the wall shear stress in human atherosclerotic right coronary arteries. Mol. Cell. Biomech. 8(1), 73–90 (2011)

    Google Scholar 

  18. J.V. Soulis, G.D. Giannoglou, Y.S. Chatzizsis, K.V. Seralidou, G.E. Parcharidis, G.E. Louridas, Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Med. Eng. Phys. 30, 9–19 (2008)

    Article  Google Scholar 

  19. J. Vimmr, A. Jonašóvá, O. Bublík, Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses. Int. J. Numer. Method Biomed. Eng. 29, 1057–1081 (2013)

    Article  MathSciNet  Google Scholar 

  20. L. Formaggia, A. Quarteroni, A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Modeling, Simulation and Application (Springer, 2009)

    Google Scholar 

  21. B. Guerciotti, C. Vergara, L. Azzimonti, L. Forzenigo, A. Buora, P. Biondetti, M. Domanin, Computational study of the fluid-dynamics in carotis before and after endarterectomy. J. Biomech. 49, 26–38 (2016)

    Article  Google Scholar 

  22. J. Keegan, P.D. Gatehouse, G.Z. Yang, D.N. Firmin, Spiral phase velocity mapping of left and right coronary artery blood flow: correction for through-plane motion using selective fat-only excitation. J. Magn. Reson. Imaging 20, 953–960 (2004)

    Google Scholar 

  23. H. Sakuma, S. Globits, M. O’Sullivan, A. Shimakawa, M.A. Berstein, T.K.F. Foo, T.M. Amidon, K. Takeda, T. Nakagawa, C.B. Higgins, Breath-hold MR measurements of blood flow velocity in internal mammary arteries and coronary artery bypass grafts. J. Magn. Reson. Im. 1, 219–222 (1996)

    Article  Google Scholar 

  24. X. Meng, Q. Fu, W. Sun, J. Yu, W. Yue, W. Bi, Competitive flow arising from varying degrees of coronary artery stenossi affects the blood flow and the production of nitric oxide and endothelin in the internal mammary artery. Eur. J. Cardio-Thorac. 43, 1022–1027 (2013)

    Google Scholar 

  25. S. Pagni, J. Storey, J. Ballen, W. Montgomery, B.Y. Chiang, S. Etoch, P.A. Spence, ITA versus SVG: a comparison of instantaneous pressure and flow dynamics during competitive flow. Eur. J. Cardio-Thorac. 11, 1086–1092 (1997)

    Article  Google Scholar 

  26. B. Guerciotti, C. Vergara, S. Ippolito, A. Quarteroni, C. Antona, R. Scrofani. Computational study of the risk of restenosis in coronary bypasses. Med. Eng. Phys. (2017 in press). doi:10.1016/j.medengphy.2017.05.008

  27. R.M. Lancellotti, C. Vergara, L. Valdettaro, S. Bose, A. Quarteroni. Large eddy simulations for blood fluid-dynamics in real stenotic carotids. Int. J. Numer. Meth. Biomed. Eng. (2017 in press). doi:10.1002/cnm.2868

  28. S. Lee, S. Lee, P. Fischer, H. Bassiouny, F. Loth, Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech 41(11), 2551–2561 (2008)

    Article  Google Scholar 

  29. L. Formaggia, J.F. Gerbeau, F. Nobile, A. Quarteroni, Numerical treatment of defective boundary conditions for the Navier-Stokes equation. SIAM J. Numer. Anal. 40(1), 376–401 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Veneziani, C. Vergara, Flow rate defective boundary conditions in haemodynamics simulations. Int. J. Numer. Method Fluid 47, 803–816 (2005)

    Google Scholar 

  31. C. Slager, J. Wentzel, F. Gijsen, J. Schuurbiers, A. van der Wal, A. van der Steen, P. Serruys, The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat. Rev. Cardiol. 2(9), 401–407 (2005)

    Google Scholar 

  32. J. Knight, U. Olgac, S.C. Saur, D. Poulikakos, W.J. Marshall, P.C. Cattin, H. Alkadhi, V. Kurtcuoglu, Choosing the optimal wall shear parameter for the prediction of plaque location—A patient-specific computational study in human right coronary arteries. Atherosclerosis 211(2), 445–450 (2010)

    Google Scholar 

  33. A. Berger, P.A. MacCarthy, U. Siebert, S. Carlier, W. Wijns, G. Heyndrickx, J. Bartunek, H. Vanermen, B.D. Bruyne, Long-term patency of internal mammary artery bypass grafts—Relationship with preoperative severity of the native coronary artery stenosis. Circulation 110, 36–40 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Vergara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Guerciotti, B., Vergara, C. (2018). Computational Comparison Between Newtonian and Non-Newtonian Blood Rheologies in Stenotic Vessels. In: Wriggers, P., Lenarz, T. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-59548-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59548-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59547-4

  • Online ISBN: 978-3-319-59548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics