Skip to main content

Secondary Metabolites from Higher Fungi

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 106

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 106))

Abstract

Secondary metabolites of higher fungi (mushrooms) are an underexplored resource compared to plant-derived secondary metabolites. An increasing interest in mushroom natural products has been noted in recent years. This chapter gives a comprehensive overview of the secondary metabolites from higher fungi, with 765 references highlighting the isolation, structure elucidation, biological activities, chemical syntheses, and biosynthesis of pigments, nitrogen-containing compounds, and terpenoids from mushrooms. Mushroom toxins are also included in each section.

In a section on pigments of higher fungi, pigments are classified into four categories, namely, those from the shikimate-chorismate, acetate-malonate, and mevalonate biosynthetic pathways, and pigments containing nitrogen, with 145 references covering the years 2010–2016.

In a section on other nitrogen-containing compounds of higher fungi, compounds are categorized primarily into nitrogen heterocycles, nucleosides, non-protein amino acids, cyclic peptides, and sphingolipids, with 65 references covering the years 2010–2016. In turn, in a section describing terpenoids of higher fungi, the sesquiterpenoids and diterpenoids are thoroughly elaborated, spanning the years 2001–2016, and 2009–2016, respectively. The divergent biosynthetic pathways from farnesyl pyrophosphate to sesquiterpenoids are also described. Selected triterpenoids with novel structures and promising biological activities, including lanostanes and ergostanes, are reported from the genus Ganoderma, and the fungi Antrodia cinnamomea and Poria cocos. In addition, cucurbitanes and saponaceolides are also compiled in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89:1323

    Article  CAS  Google Scholar 

  2. Hawksworth DL (2001) Mushrooms: the extent of the unexplored potential. Int J Med Mushrooms 3:5

    Article  Google Scholar 

  3. Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1

    Article  Google Scholar 

  4. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s Dictionary of the Fungi, 10th edn. CABI International, Wallingford, CT, USA

    Google Scholar 

  5. Gill M (1994) Pigments of fungi (macromycetes). Nat Prod Rep 11:67

    Article  CAS  Google Scholar 

  6. Gill M (1996) Pigments of fungi (macromycetes). Nat Prod Rep 13:513

    Article  CAS  Google Scholar 

  7. Gill M (1999) Pigments of fungi (macromycetes). Nat Prod Rep 16:301

    Article  CAS  Google Scholar 

  8. Gill M (2003) Pigments of fungi (macromycetes). Nat Prod Rep 20:615

    Article  CAS  Google Scholar 

  9. Gill M, Steglich W (1987) Pigments of fungi (macromycetes). Prog Chem Org Nat Prod 51:1

    CAS  Google Scholar 

  10. Zhou ZY, Liu JK (2010) Pigments of fungi (macromycetes). Nat Prod Rep 27:1531

    Article  CAS  Google Scholar 

  11. Liu JK (2006) Natural terphenyls: developments since 1877. Chem Rev 106:2209

    Article  CAS  Google Scholar 

  12. Fang ST, Zhang L, Li ZH, Li B, Liu JK (2010) Cyathane diterpenoids and nitrogenous terphenyl derivative from the fruiting bodies of basidiomycete Phellodon niger. Chem Pharm Bull 58:1176

    Article  CAS  Google Scholar 

  13. Ma K, Han JJ, Bao L, Wei TZ, Liu HW (2014) Two sarcoviolins with antioxidative and α-glucosidase inhibitory activity from the edible mushroom Sarcodon leucopus collected in Tibet. J Nat Prod 77:942

    Article  CAS  Google Scholar 

  14. Kaneko A, Tsukada M, Fukai M, Suzuki T, Nishio K, Miki K, Kinoshita K, Takahashi K, Koyama K (2010) KDR kinase inhibitor isolated from the mushroom Boletopsis leucomelas. J Nat Prod 73:1002

    Article  CAS  Google Scholar 

  15. Wang SM, Han JJ, Ma K, Jin T, Bao L, Pei YF, Liu HW (2014) New α-glucosidase inhibitors with p-terphenyl skeleton from the mushroom Hydnellum concrescens. Fitoterapia 98:149

    Article  CAS  Google Scholar 

  16. Masubuti H, Endo Y, Araya H, Uekusa H, Fujimoto Y (2013) Establishment of benzodioxazine core structure for sarcodonin class of natural products by X-ray analysis. Org Lett 15:2076

    Article  CAS  Google Scholar 

  17. Wossa SW, Beekman AM, Ma P, Kevo O, Barrow RA (2013) Identification of boletopsin 11 and 12, antibiotics from the traditionally used fungus Boletopsis sp. Asian J Org Chem 2:565

    Article  CAS  Google Scholar 

  18. Beekman AM, Wossa SW, Kevo O, Ma P, Barrow RA (2015) Discovery and synthesis of boletopsins 13 and 14, brominated fungal metabolites of terrestrial origin. J Nat Prod 78:2133

    Article  CAS  Google Scholar 

  19. Norikura T, Fujiwara K, Narita T, Yamaguchi S, Morinaga Y, Iwai K, Matsue H (2011) Anticancer activities of thelephantin O and vialinin A isolated from Thelephora aurantiotincta. J Agric Food Chem 59:6974

    Article  CAS  Google Scholar 

  20. Ye YQ, Negishi C, Hongo Y, Koshino H, Onose J, Abe N, Takahashi S (2014) Structural elucidation and synthesis of vialinin C, a new inhibitor of TNF-α production. Bioorg Med Chem 22:2442

    Article  CAS  Google Scholar 

  21. Liu R, Wang YN, Xie BJ, Pan Q (2015) A new p-terphenyl derivative from the mushroom Thelephora vialis. Helv Chim Acta 98:1075

    Article  CAS  Google Scholar 

  22. Nagasawa I, Kaneko A, Suzuki T, Nishio K, Kinoshita K, Shiro M, Koyama K (2014) Potential anti-angiogenesis effects of p-terphenyl compounds from Polyozellus multiplex. J Nat Prod 77:963

    Article  CAS  Google Scholar 

  23. Kuhnert E, Surup F, Herrmann J, Huch V, Muller R, Stadler M (2015) Rickenyls A-E, antioxidative terphenyls from the fungus Hypoxylon rickii (Xylariaceae, Ascomycota). Phytochemistry 118:68

    Article  CAS  Google Scholar 

  24. Fujiwara K, Sato T, Sano Y, Norikura T, Katoono R, Suzuki T, Matsue H (2012) Total synthesis of thelephantin O, vialinin A/terrestrin A, and terrestrins B–D. J Org Chem 77:5161

    Article  CAS  Google Scholar 

  25. Takahashi S, Yoshida A, Uesugi S, Hongo Y, Kimura K, Matsuoka K, Koshino H (2014) Structural revision of kynapcin-12 by total synthesis, and inhibitory activities against prolyl oligopeptidase and cancer cells. Bioorg Med Chem Lett 24:3373

    Article  CAS  Google Scholar 

  26. Fujiwara K, Kushibe K, Sato T, Norikura T, Matsue H, Iwai K, Katoono R, Suzuki T (2015) Synthesis of ganbajunins D and E and the proposed structure of thelephantin D. Eur J Org Chem:5798

    Google Scholar 

  27. Lin DW, Masuda T, Biskup MB, Nelson JD, Baran PS (2011) Synthesis-guided structure revision of the sarcodonin, sarcoviolin, and hydnellin natural product family. J Org Chem 76:1013

    Article  CAS  Google Scholar 

  28. Usui I, Lin DW, Masuda T, Baran PS (2013) Convergent synthesis and structural confirmation of phellodonin and sarcodonin ε. Org Lett 15:2080

    Article  CAS  Google Scholar 

  29. Fukuda T, Nagai K, Tomoda H (2012) (±)-Tylopilusins, diphenolic metabolites from the fruiting bodies of Tylopilus eximius. J Nat Prod 75:2228

    Article  CAS  Google Scholar 

  30. Fukuda T, Tomoda H (2013) Tylopilusin C, a new diphenolic compound from the fruiting bodies of Tylopilus eximinus. J Antibiot 66:355

    Article  CAS  Google Scholar 

  31. Gruber G, Kerschensteiner L, Steglich W (2014) Chromapedic acid, pulvinic acids and acetophenone derivatives from the mushroom Leccinum chromapes (Boletales). Z Naturforsch B 69:432

    Article  CAS  Google Scholar 

  32. Zan LF, Qin JC, Zhang YM, Yao YH, Bao HY, Li X (2011) Antioxidant hispidin derivatives from medicinal mushroom Inonotus hispidus. Chem Pharm Bull 59:770

    Article  CAS  Google Scholar 

  33. Kubo M, Liu YH, Ishida M, Harada K, Fukuyama Y (2014) A new spiroindene pigment from the medicinal fungus Phellinus ribis. Chem Pharm Bull 62:122

    Article  CAS  Google Scholar 

  34. Han JJ, Bao L, He LW, Zhang XQ, Yang XL, Li SJ, Yao YJ, Liu HW (2013) Phaeolschidins A–E, five hispidin derivatives with antioxidant activity from the fruiting body of Phaeolus schweinitzii collected in the Tibetan plateau. J Nat Prod 76:1448

    Article  CAS  Google Scholar 

  35. Liu DZ, Wang F, Liao TG, Tang JG, Steglich W, Zhu HJ, Liu JK (2006) Vibralactone: a lipase inhibitor with an unusual fused β-lactone produced by cultures of the basidiomycete Boreostereum vibrans. Org Lett 8:5749

    Article  CAS  Google Scholar 

  36. Zhao PJ, Yang YL, LC D, Liu JK, Zeng Y (2013) Elucidating the biosynthetic pathway for vibralactone: a pancreatic lipase inhibitor with a fused bicyclic β-lactone. Angew Chem Int Ed 52:2298

    Article  CAS  Google Scholar 

  37. Zeiler E, Braun N, Böttcher T, Kastenmüller A, Weinkauf S, Sieber SA (2011) Vibralactone as a tool to study the activity and structure of the ClpP1P2 complex from Listeria monocytogenes. Angew Chem Int Ed 50:11001

    Article  CAS  Google Scholar 

  38. Aqueveque P, Cespedes CL, Becerra J, Davila M, Sterner O (2015) Bioactive compounds isolated from submerged fermentations of the Chilean fungus Stereum rameale. Z Naturforsch C 70:97

    Article  CAS  Google Scholar 

  39. Schwenk D, Brandt P, Blanchette RA, Nett M, Hoffmeister D (2016) Unexpected metabolic versatility in a combined fungal fomannoxin/vibralactone biosynthesis. J Nat Prod 79:1407

    Article  CAS  Google Scholar 

  40. Jiang MY, Wang F, Yang XL, Fang LZ, Dong ZJ, Zhu HJ, Liu JK (2008) Derivatives of vibralactone from cultures of the basidiomycete Boreostereum vibrans. Chem Pharm Bull 56:1286

    Article  CAS  Google Scholar 

  41. Jiang MY, Zhang L, Dong ZJ, Yang ZL, Leng Y, Liu JK (2010) Vibralactones D-F from cultures of the basidiomycete Boreostereum vibrans. Chem Pharm Bull 58:113

    Article  CAS  Google Scholar 

  42. Wang GQ, Wei K, Feng T, Li ZH, Zhang L, Wang QA, Liu JK (2012) Vibralactones G–J from cultures of the basidiomycete Boreostereum vibrans. J Asian Nat Prod Res 14:115

    Article  CAS  Google Scholar 

  43. Wang GQ, Wei K, Zhang L, Li ZH, Wang QA, Liu JK (2014) Three new vibralactone-related compounds from cultures of basidiomycete Boreostereum vibrans. J Asian Nat Prod Res 16:447

    Article  CAS  Google Scholar 

  44. Chen HP, Zhao ZZ, Yin RH, Yin X, Feng T, Li ZH, Wei K, Liu JK (2014) Six new vibralactone derivatives from cultures of the fungus Boreostereum vibrans. Nat Prod Bioprospect 4:271

    Article  CAS  Google Scholar 

  45. Wang GQ, Wei K, Li ZH, Feng T, Ding JH, Wang QA, Liu JK (2013) Three new compounds from the cultures of basidiomycete Boreostereum vibrans. J Asian Nat Prod Res 15:950

    Article  CAS  Google Scholar 

  46. Chen HP, Zhao ZZ, Li ZH, Dong ZJ, Wei K, Bai X, Zhang L, Wen CN, Feng T, Liu JK (2016) Novel natural oximes and oxime esters with a vibralactone backbone from the basidiomycete Boreostereum vibrans. Chemistry Open 5:142

    CAS  Google Scholar 

  47. Dubin GM, Fkyerat A, Tabacchi R (2000) Acetylenic aromatic compounds from Stereum hirsutum. Phytochemistry 53:571

    Article  CAS  Google Scholar 

  48. Yun BS, Cho Y, Lee IK, Cho SM, Lee TH, Yoo ID (2002) Sterins A and B, new antioxidative compounds from Stereum hirsutum. J Antibiot 55:208

    Article  CAS  Google Scholar 

  49. Yoo NH, Yoo ID, Kim JW, Yun BS, Ryoo IJ, Yoon ES, Chinh NT, Kim JP (2005) Sterin C, a new antioxidant from the mycelial culture of the mushroom Stereum hirsutum. Agric Chem Biotechnol 48:38

    CAS  Google Scholar 

  50. Saielli G, Bagno A (2009) Can two molecules have the same NMR spectrum? Hexacyclinol revisited. Org Lett 11:1409

    Article  CAS  Google Scholar 

  51. Sekizawa R, Ikeno S, Nakamura H, Naganawa H, Matsui S, Iinuma H, Takeuchi T (2002) Panepophenanthrin, from a mushroom strain, a novel inhibitor of the ubiquitin-activating enzyme. J Nat Prod 65:1491

    Article  CAS  Google Scholar 

  52. Yang YL, Zhou H, Du G, Feng KN, Feng T, Fu XL, Liu JK, Zeng Y (2016) A monooxygenase from Boreostereum vibrans catalyzes oxidative decarboxylation in a divergent vibralactone biosynthesis pathway. Angew Chem Int Ed 55:5463

    Article  CAS  Google Scholar 

  53. Schlegel B, Hartl A, Dahse HM, Gollmick FA, Grafe U, Dorfelt H, Kappes B (2002) Hexacyclinol, a new antiproliferative metabolite of Panus rudis HKI 0254. J Antibiot 55:814

    Article  CAS  Google Scholar 

  54. Rychnovsky SD (2006) Predicting NMR spectra by computational methods: structure revision of hexacyclinol. Org Lett 8:2895

    Article  CAS  Google Scholar 

  55. Porco JA, Su S, Lei XG, Bardhan S, Rychnovsky SD (2006) Total synthesis and structure assignment of (+)-hexacyclinol. Angew Chem Int Ed 45:5790

    Article  CAS  Google Scholar 

  56. Garlaschelli L, Magistrali E, Vidari G, Zuffardi O (1995) Tricholomenyn A and tricholomenyn B, novel antimitotic acetylenic cyclohexenone derivatives from the fruiting bodies of Tricholoma acerbum. Tetrahedron Lett 36:5633

    Article  CAS  Google Scholar 

  57. Garlaschelli L, Vidari G, Vitafinzi P (1996) Tricholomenyns C, D, and E, novel dimeric dienyne geranyl cyclohexenones from the fruiting bodies of Tricholoma acerbum. Tetrahedron Lett 37:6223

    Article  CAS  Google Scholar 

  58. Yin X, Feng T, Li ZH, Dong ZJ, Li Y, Liu JK (2013) Highly oxygenated meroterpenoids from fruiting bodies of the mushroom Tricholoma terreum. J Nat Prod 76:1365

    Article  CAS  Google Scholar 

  59. Fujimoto H, Nakayama Y, Yamazaki M (1993) Identification of immunosuppressive components of a mushroom, Lactarius flavidulus. Chem Pharm Bull 41:654

    Article  CAS  Google Scholar 

  60. Takahashi A, Kusano G, Ohta T, Nozoe S (1988) The constituents of Lactarius flavidulus IMAI. Chem Pharm Bull 36:2366

    Article  CAS  Google Scholar 

  61. Takahashi A, Kusano G, Ohta T, Nozoe S (1993) Revised structures of flavidulols, constituents of Lactarius flavidulus IMAI, and the structure of flavidulol D. Chem Pharm Bull 41:2032

    Article  CAS  Google Scholar 

  62. Arnone A, Cardillo R, Meille SV, Nasini G, Tolazzi M (1994) Isolation and structure elucidation of clavilactones A–C, new metabolites from the fungus Clitocybe clavipes. J Chem Soc Perkin Trans 1:2165

    Article  Google Scholar 

  63. Cassinelli G, Lanzi C, Pensa T, Gambetta RA, Nasini G, Cuccuru G, Cassinis M, Pratesi G, Polizzi D, Tortoreto M, Zunino F (2000) Clavilactones, a novel class of tyrosine kinase inhibitors of fungal origin. Biochem Pharmacol 59:1539

    Article  CAS  Google Scholar 

  64. Merlini L, Nasini G, Scaglioni L, Cassinelli G, Lanzi C (2000) Structure elucidation of clavilactone D: an inhibitor of protein tyrosine kinases. Phytochemistry 53:1039

    Article  CAS  Google Scholar 

  65. Gao QL, Guo PX, Luo Q, Yan H, Cheng YX (2015) Petchienes A-E, meroterpenoids from Ganoderma petchii. Nat Prod Commun 10:2019

    Google Scholar 

  66. Luo Q, Wang XL, Di L, Yan YM, Lu Q, Yang XH, Hu DB, Cheng YX (2015) Isolation and identification of renoprotective substances from the mushroom Ganoderma lucidum. Tetrahedron 71:840

    Article  CAS  Google Scholar 

  67. Yan YM, Wang XL, Luo Q, Jiang LP, Yang CP, Hou B, Zuo ZL, Chen YB, Cheng YX (2015) Metabolites from the mushroom Ganoderma lingzhi as stimulators of neural stem cell proliferation. Phytochemistry 114:155

    Article  CAS  Google Scholar 

  68. Luo Q, Di L, Yang XH, Cheng YX (2016) Applanatumols A and B, meroterpenoids with unprecedented skeletons from Ganoderma applanatum. RSC Adv 6:45963

    Article  CAS  Google Scholar 

  69. Yan YM, Ai J, Zhou LL, Chung ACK, Li R, Nie J, Fang P, Wang XL, Luo J, Hu Q, Hou FF, Cheng YX (2013) Lingzhiols, unprecedented rotary door-shaped meroterpenoids as potent and selective inhibitors of p-smad3 from Ganoderma lucidum. Org Lett 15:5488

    Article  CAS  Google Scholar 

  70. Luo Q, Di L, Dai WF, Lu Q, Yan YM, Yang ZL, Li RT, Cheng YX (2015) Applanatumin A, a new dimeric meroterpenoid from Ganoderma applanatum that displays potent antifibrotic activity. Org Lett 17:1110

    Article  CAS  Google Scholar 

  71. Li L, Li H, Peng XR, Hou B, Yu MY, Dong JR, Li XN, Zhou L, Yang J, Qiu MH (2016) (±)-Ganoapplanin, a pair of polycyclic meroterpenoid enantiomers from Ganoderma applanatum. Org Lett 18:6078

    Article  CAS  Google Scholar 

  72. Luo Q, Tian L, Di L, Yan YM, Wei XY, Wang XF, Cheng YX (2015) (±)-Sinensilactam A, a pair of rare hybrid metabolites with smad3 phosphorylation inhibition from Ganoderma sinensis. Org Lett 17:1565

    Article  CAS  Google Scholar 

  73. Dou M, Di L, Zhou LL, Yan YM, Wang XL, Zhou FJ, Yang ZL, Li RT, Hou FF, Cheng YX (2014) Cochlearols A and B, polycyclic meroterpenoids from the fungus Ganoderma cochlear that have renoprotective activities. Org Lett 16:6064

    Article  CAS  Google Scholar 

  74. Zhou FJ, Nian Y, Yan YM, Gong Y, Luo Q, Zhang Y, Hou B, Zuo ZL, Wang SM, Jiang HH, Yang J, Cheng YX (2015) Two new classes of T-type calcium channel inhibitors with new chemical scaffolds from Ganoderma cochlear. Org Lett 17:3082

    Article  CAS  Google Scholar 

  75. Frichert A, Jones PG, Lindel T (2016) Enantioselective total synthesis of terreumols A and C from the mushroom Tricholoma terreum. Angew Chem Int Ed 55:2916

    Article  CAS  Google Scholar 

  76. Long R, Huang J, Shao WB, Liu S, Lan Y, Gong JX, Yang Z (2014) Asymmetric total synthesis of (–)-lingzhiol via a Rh-catalysed [3+2] cycloaddition. Nat Commun 5:5707

    Article  CAS  Google Scholar 

  77. Chen D, Liu HM, Li MM, Yan YM, Xu WD, Li XN, Cheng YX, Qin HB (2015) Concise synthesis of (±)-lingzhiol via epoxy-arene cyclization. Chem Commun 51:14594

    Article  CAS  Google Scholar 

  78. Chen D, Xu WD, Liu HM, Li MM, Yan YM, Li XN, Li Y, Cheng YX, Qin HB (2016) Enantioselective total synthesis of (+)-lingzhiol via tandem semipinacol rearrangement/Friedel-Crafts type cyclization. Chem Commun 52:8561

    Article  CAS  Google Scholar 

  79. Gautam KS, Birman VB (2016) Biogenetically inspired synthesis of lingzhiol. Org Lett 18:1499

    Article  CAS  Google Scholar 

  80. Cao WW, Luo Q, Cheng YX, Wang SM (2016) Meroterpenoid enantiomers from Ganoderma sinensis. Fitoterapia 110:110

    Article  CAS  Google Scholar 

  81. Huang SZ, Cheng BH, Ma QY, Wang Q, Kong FD, Dai HF, Qiu SQ, Zheng PY, Liu ZQ, Zhao YX (2016) Anti-allergic prenylated hydroquinones and alkaloids from the fruiting body of Ganoderma calidophilum. RSC Adv 6:21139

    Article  CAS  Google Scholar 

  82. Peng XR, Li L, Wang X, Zhu GL, Li ZR, Qiu MH (2016) Antioxidant farnesylated hydroquinones from Ganoderma capense. Fitoterapia 111:18

    Article  CAS  Google Scholar 

  83. Dou M, Li RT, Cheng YX (2016) Minor compounds from fungus Ganoderma cochlear. Chin Herb Med 8:85

    Article  CAS  Google Scholar 

  84. Chen HP, Zhao ZZ, Zhang Y, Bai X, Zhang L, Liu JK (2016) (+)- and (–)-Ganodilactone, a pair of meroterpenoid dimers with pancreatic lipase inhibitory activities from the macromycete Ganoderma leucocontextum. RSC Adv 6:64469

    Article  CAS  Google Scholar 

  85. Peng XR, Liu JQ, Wan LS, Li XN, Yan YX, Qiu MH (2014) Four new polycyclic meroterpenoids from Ganoderma cochlear. Org Lett 16:5262

    Article  CAS  Google Scholar 

  86. Fukai M, Tsukada M, Miki K, Suzuki T, Sugita T, Kinoshita K, Takahashi K, Shiro M, Koyama K (2012) Hypoxylonols C-F, benzo[j]fluoranthenes from Hypoxylon truncatum. J Nat Prod 75:22

    Article  CAS  Google Scholar 

  87. Fukai M, Suzuki T, Nagasawa I, Kinoshita K, Takahashi K, Koyama K (2014) Antiangiogenic activity of hypoxylonol C. J Nat Prod 77:1065

    Article  CAS  Google Scholar 

  88. Du L, King JB, Cichewicz RH (2014) Chlorinated polyketide obtained from a Daldinia sp. treated with the epigenetic modifier suberoylanilide hydroxamic acid. J Nat Prod 77:2454

    Article  CAS  Google Scholar 

  89. Sudarman E, Kuhnert E, Hyde KD, Sir EB, Surup F, Stadler M (2016) Truncatones A-D, benzo[j]fluoranthenes from Annulohypoxylon species (Xylariaceae, Ascomycota). Tetrahedron 72:6450

    Article  CAS  Google Scholar 

  90. La Clair JJ, Rheingold AL, Burkart MD (2011) Ganodone, a bioactive benzofuran from the fruiting bodies of Ganoderma tsugae. J Nat Prod 74:2045

    Article  CAS  Google Scholar 

  91. Liu XT, Schwan WR, Volk TJ, Rott M, Liu MM, Huang P, Liu Z, Wang Y, Zitomer NC, Sleger C, Hartsel S, Monte A, Zhang LX (2012) Antibacterial spirobisnaphthalenes from the North American cup fungus Urnula craterium. J Nat Prod 75:1534

    Article  CAS  Google Scholar 

  92. Feng T, Li ZH, Yin X, Dong ZJ, Wang GQ, Li XY, Li Y, Liu JK (2013) New benzene derivatives from cultures of ascomycete Daldinia concentrica. Nat Prod Bioprospect 3:150

    Article  CAS  Google Scholar 

  93. Xian LPZ, Jing XNL, Meng DL, Sha Y (2006) A new perylenequinone from the fruit bodies of Bulgaria inquinans. J Asian Nat Prod Res 8:743

    Article  CAS  Google Scholar 

  94. Kuhnert E, Surup F, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero AI, Stadler M (2015) Lenormandins A–G, new azaphilones from Hypoxylon lenormandii and Hypoxylon jaklitschii sp. nov., recognised by chemotaxonomic data. Fungal Divers 71:165

    Article  Google Scholar 

  95. Hu DB, Li WX, Zhao ZZ, Feng T, Yin RH, Li ZH, Liu JK, Zhu HJ (2014) Highly unsaturated pyranone derivatives from the basidiomycete Junghuhnia nitida. Tetrahedron Lett 55:6530

    Article  CAS  Google Scholar 

  96. Endo Y, Minowa A, Kanamori R, Araya H (2012) A rare α-pyrone from bitter tooth mushroom, Sarcodon scabrosus (Fr.) Karst. Biochem Syst Ecol 44:286

    Article  CAS  Google Scholar 

  97. Surup F, Mohr KI, Jansen R, Stadler M (2013) Cohaerins G–K, azaphilone pigments from Annulohypoxylon cohaerens and absolute stereochemistry of cohaerins C–K. Phytochemistry 95:252

    Article  CAS  Google Scholar 

  98. Li N, Xu J, Li X, Zhang P (2013) Two new anthraquinone dimers from the fruit bodies of Bulgaria inquinans. Fitoterapia 84:85

    Article  CAS  Google Scholar 

  99. Gao JM, Qin JC, Pescitelli G, Di PS, Ma YT, Zhang AL (2010) Structure and absolute configuration of toxic polyketide pigments from the fruiting bodies of the fungus Cortinarius rufo-olivaceus. Org Biomol Chem 8:3543

    Article  CAS  Google Scholar 

  100. Beattie KD, Thompson DR, Tiralongo E, Ratkowsky D, May TW, Gill M (2011) Austrocolorone B and austrocolorin B1, cytotoxic anthracenone dimers from the Tasmanian mushroom Cortinarius vinosipes Gasparini. Tetrahedron Lett 52:5448

    Article  CAS  Google Scholar 

  101. Kawagishi H, Ando M, Mizuno T (1990) Hericenone A and hericenone B as cytotoxic principles from the mushroom Hericium erinaceum. Tetrahedron Lett 31:373

    Article  CAS  Google Scholar 

  102. Kawagishi H, Ando M, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, Ukai N, Furukawa S (1991) Hericenone C, hericenone D and hericenone E, stimulators of nerve growth-factor (NGF)-synthesis, from the mushroom Hericium erinaceum. Tetrahedron Lett 32:4561

    Article  CAS  Google Scholar 

  103. Kawagishi H, Ando M, Shinba K, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, Ukai N, Furukawa S (1993) Chromans, hericenone F, hericenone G, and hericenone H from the mushroom Hericium erinaceum. Phytochemistry 32:175

    Article  Google Scholar 

  104. Ma BJ, Ma JC, Ruan Y (2012) Hericenone L, a new aromatic compound from the fruiting bodies of Hericium erinaceums. Chin J Nat Med 10:363

    CAS  Google Scholar 

  105. Ueda K, Tsujimori M, Kodani S, Chiba A, Kubo M, Masuno K, Sekiya A, Nagai K, Kawagishi H (2008) An endoplasmic reticulum (ER) stress-suppressive compound and its analogues from the mushroom Hericium erinaceum. Bioorg Med Chem 16:9467

    Article  CAS  Google Scholar 

  106. Li W, Zhou W, Kim EJ, Shim SH, Kang HK, Kim YH (2015) Isolation and identification of aromatic compounds in Lion's Mane mushroom and their anticancer activities. Food Chem 170:336

    Article  CAS  Google Scholar 

  107. Yaoita Y, Danbara K, Kikuchi M (2005) Two new aromatic compounds from Hericium erinaceum (Bull.:Fr.) Pers. Chem Pharm Bull 53:1202

    Article  CAS  Google Scholar 

  108. Ueda K, Kodani S, Kubo M, Masuno K, Sekiya A, Nagai K, Kawagishi H (2009) Endoplasmic reticulum (ER) stress-suppressive compounds from scrap cultivation beds of the mushroom Hericium erinaceum. Biosci Biotechnol Biochem 73:1908

    Article  CAS  Google Scholar 

  109. Li W, Sun YN, Zhou W, Shim SH, Kim YH (2014) Erinacene D, a new aromatic compound from Hericium erinaceum. J Antibiot 67:727

    Article  CAS  Google Scholar 

  110. Wittstein K, Rascher M, Rupcic Z, Löwen E, Winter B, Köster RW, Stadler M (2016) Corallocins A–C, nerve growth and brain-derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides. J Nat Prod 79:2264

    Article  CAS  Google Scholar 

  111. Ye M, Luo XJ, Li LL, Shi Y, Tan M, Weng XX, Li W, Liu JK, Cao Y (2007) Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Lett 258:199

    Article  CAS  Google Scholar 

  112. Yu XF, Deng QP, Li W, Xiao LB, Luo XJ, Liu XL, Yang LF, Peng SL, Ding ZH, Feng T, Zhou J, Fan J, Bode AM, Dong ZG, Liu JK, Cao Y (2015) Neoalbaconol induces cell death through necroptosis by regulating RIPK-dependent autocrine TNFα and ROS production. Oncotarget 6:1995

    Article  Google Scholar 

  113. Liu LY, Li ZH, Ding ZH, Dong ZJ, Li GT, Li Y, Liu JK (2013) Meroterpenoid pigments from the basidiomycete Albatrellus ovinus. J Nat Prod 76:79

    Article  CAS  Google Scholar 

  114. Liu LY, Li ZH, Wang GQ, Wei K, Dong ZJ, Feng T, Li GT, Li Y, Liu JK (2014) Nine new farnesylphenols from the basidiomycete Albatrellus caeruleoporus. Nat Prod Bioprospect 4:119

    Article  CAS  Google Scholar 

  115. Koch B, Kilpert C, Steglich W (2010) Cristatomentin, a green pigment of mixed biogenetic origin from Albatrellus cristatus (Basidiomycetes). Eur J Org Chem:359

    Google Scholar 

  116. Chou KCC, Yang SH, Wu HL, Lin PY, Chang TL, Sheu F, Chen KH, Chiang BH (2017) Biosynthesis of antroquinonol and 4-acetylantroquinonol B via a polyketide pathway using orsellinic acid as a ring precursor in Antrodia cinnamomea. J Agric Food Chem 65:74

    Article  CAS  Google Scholar 

  117. Lin HC, Lin MH, Liao JH, Wu TH, Lee TH, Mi FL, CH W, Chen KC, Cheng CH, Lin CW (2017) Antroquinonol, a ubiquinone derivative from the mushroom Antrodia camphorata, inhibits colon cancer stem cell-like properties: insights into the molecular mechanism and inhibitory targets. J Agric Food Chem 65:51

    Article  CAS  Google Scholar 

  118. Sulake RS, Chen CP (2015) Total synthesis of (+)-antroquinonol and (+)-antroquinonol D. Org Lett 17:1138

    Article  CAS  Google Scholar 

  119. Wang SC, Lee TH, Hsu CH, Chang YJ, Chang MS, Wang YC, Ho YS, Wen WC, Lin RK (2014) Antroquinonol D, isolated from Antrodia camphorata, with DNA demethylation and anticancer potential. J Agric Food Chem 62:5625

    Article  CAS  Google Scholar 

  120. Lin YW, Pan JH, Liu RH, Kuo YH, Sheen LY, Chiang BH (2010) The 4-acetylantroquinonol B isolated from mycelium of Antrodia cinnamomea inhibits proliferation of hepatoma cells. J Sci Food Agric 90:1739

    Article  CAS  Google Scholar 

  121. Chen JJ, Lin WJ, Liao CH, Shieh PC (2007) Anti-inflammatory benzenoids from Antrodia camphorata. J Nat Prod 70:989

    Article  CAS  Google Scholar 

  122. Geethangili M, Fang SH, Lai CH, Rao YK, Lien HM, Tzeng YM (2010) Inhibitory effect of Antrodia camphorata constituents on the Helicobacter pylori-associated gastric inflammation. Food Chem 119:149

    Article  CAS  Google Scholar 

  123. Shi LS, Chao CH, Shen DY, Chan HH, Chen CH, Liao YR, SJ W, Leu YL, Shen YC, Kuo YH, Lee EJ, Qian KD, Wu TS, Lee KH (2011) Biologically active constituents from the fruiting body of Taiwanofungus camphoratus. Bioorg Med Chem 19:677

    Article  CAS  Google Scholar 

  124. Tu SH, Wu CH, Chen LC, Huang CS, Chang HW, Chang CH, Lien HM, Ho YS (2012) In vivo antitumor effects of 4,7-dimethoxy-5-methyl-1,3-benzodioxole isolated from the fruiting body of Antrodia camphorata through activation of the p53-mediated p27/kip1 signaling pathway. J Agric Food Chem 60:3612

    Article  CAS  Google Scholar 

  125. Chen PY, Wu JD, Tang KY, CC Y, Kuo YH, Zhong WB, Lee CK (2013) Isolation and synthesis of a bioactive benzenoid derivative from the fruiting bodies of Antrodia camphorata. Molecules 18:7600

    Article  CAS  Google Scholar 

  126. Chen YC, Chiu HL, Chao CY, Lin WH, Chao LK, Huang GJ, Kuo YH (2013) New anti-inflammatory aromatic components from Antrodia camphorata. Int J Mol Sci 14:4629

    Article  CAS  Google Scholar 

  127. Wang BT, Qi QY, Ma K, Pei YF, Han JJ, Xu W, Li EW, Liu HW (2014) Depside α-glucosidase inhibitors from a culture of the mushroom Stereum hirsutum. Planta Med 80:918

    Article  CAS  Google Scholar 

  128. Ma K, Bao L, Han JJ, Jin T, Yang XL, Zhao F, Li SF, Song FH, Liu MM, Liu HW (2014) New benzoate derivatives and hirsutane type sesquiterpenoids with antimicrobial activity and cytotoxicity from the solid-state fermented rice by the medicinal mushroom Stereum hirsutum. Food Chem 143:239

    Article  CAS  Google Scholar 

  129. Omolo JO, Anke H, Sterner O (2002) Hericenols A-D and a chromanone from submerged cultures of a Stereum species. Phytochemistry 60:431

    Article  CAS  Google Scholar 

  130. Fan QY, Yin X, Li ZH, Li Y, Liu JK, Feng T, Zhao BH (2014) Mycophenolic acid derivatives from cultures of the mushroom Laetiporus sulphureus. Chin J Nat Med 12:685

    CAS  Google Scholar 

  131. Hirata Y, Nakanishi K (1950) Grifolin, an antibiotic from a basidiomycete. J Biol Chem 184:135

    CAS  Google Scholar 

  132. Ye M, Liu JK, Lu ZX, Zhao Y, Liu SF, Li LL, Tan M, Weng XX, Li W, Cao Y (2005) Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, inhibits tumor cell growth by inducing apoptosis in vitro. FEBS Lett 579:3437

    Article  CAS  Google Scholar 

  133. Luo XJ, Yang LF, Xiao LB, Xia XF, Dong X, Zhong JF, Liu Y, Li NM, Chen L, Li HD, Li W, Liu WB, Yu XF, Chen HY, Tang M, Weng XX, Yi W, Bode A, Dong ZG, Liu JK, Cao Y (2015) Grifolin directly targets ERK1/2 to epigenetically suppress cancer cell metastasis. Oncotarget 6:42704

    Article  Google Scholar 

  134. Luo XJ, Li NM, Zhong JF, Tan ZQ, Liu Y, Dong X, Cheng C, Xu ZJ, Li HD, Yang LF, Tang M, Weng XX, Yi W, Liu JK, Cao Y (2016) Grifolin inhibits tumor cells adhesion and migration via suppressing interplay between PGC1α and Fra-1/LSF-MMP2/CD44 axes. Oncotarget 7:68708

    Article  Google Scholar 

  135. Deng Q, Yu X, Xiao L, Hu Z, Luo X, Tao Y, Yang L, Liu X, Chen H, Ding Z, Feng T, Tang Y, Weng X, Gao J, Yi W, Bode AM, Dong Z, Liu J, Cao Y (2013) Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway. Cell Death Dis 4:e804

    Article  CAS  Google Scholar 

  136. Hsieh YH, Chu FH, Wang YS, Chien SC, Chang ST, Shaw JF, Chen CY, Hsiao WW, Kuo YH, Wang SY (2010) Antrocamphin A, an anti-inflammatory principle from the fruiting body of Taiwanofungus camphoratus, and its mechanisms. J Agric Food Chem 58:3153

    Article  CAS  Google Scholar 

  137. Schwenk D, Nett M, Dahse HM, Horn U, Blanchette RA, Hoffmeister D (2014) Injury-induced biosynthesis of methyl-branched polyene pigments in a white-rotting basidiomycete. J Nat Prod 77:2658

    Article  CAS  Google Scholar 

  138. Xu GH, Kim JW, Ryoo IJ, Choo SJ, Kim YH, Seok SJ, Ahn JS, Yoo ID (2010) Lactariolines A and B: New guaiane sesquiterpenes with a modulatory effect on interferon-γ production from the fruiting bodies of Lactarius hatsudake. J Antibiot 63:335

    Article  CAS  Google Scholar 

  139. Surup F, Wiebach V, Kuhnert E, Stadler M (2016) Truncaquinones A and B, asterriquinones from Annulohypoxylon truncatum. Tetrahedron Lett 57:2183

    Article  CAS  Google Scholar 

  140. Pulte A, Wagner S, Kogler H, Spiteller P (2016) Pelianthinarubins A and B, red pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena pelianthina. J Nat Prod 79:873

    Article  CAS  Google Scholar 

  141. Geissler T, Brandt W, Porzel A, Schlenzig D, Kehlen A, Wessjohann L, Arnold N (2010) Acetylcholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg Med Chem 18:2173

    Article  CAS  Google Scholar 

  142. Jaeger RJR, Lamshoft M, Gottfried S, Spiteller M, Spiteller P (2013) HR-MALDI-MS imaging assisted screening of β-carboline alkaloids discovered from Mycena metata. J Nat Prod 76:127

    Article  CAS  Google Scholar 

  143. Jaeger RJR, Spiteller P (2010) Mycenaaurin A, an antibacterial polyene pigment from the fruiting bodies of Mycena aurantiomarginata. J Nat Prod 73:1350

    Article  CAS  Google Scholar 

  144. Kuhnert E, Heitkamper S, Fournier J, Surup F, Stadler M (2014) Hypoxyvermelhotins A–C, new pigments from Hypoxylon lechatii sp. nov. Fungal Biol 118:242

    Article  CAS  Google Scholar 

  145. Wang YQ, Bao L, Yang XL, Li L, Li SF, Gao H, Yao XS, Wen HA, Lie HW (2012) Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice. Food Chem 132:1346

    Article  CAS  Google Scholar 

  146. Jiang MY, Feng T, Liu JK (2011) N-containing compounds of macromycetes. Nat Prod Rep 28:783

    Article  CAS  Google Scholar 

  147. Liu JK (2005) N-containing compounds of macromycetes. Chem Rev 105:2723

    Article  CAS  Google Scholar 

  148. Choi JH, Maeda K, Nagai K, Harada E, Kawade M, Hirai H, Kawagishi H (2010) Termitomycamides A to E, fatty acid amides isolated from the mushroom Termitomyces titanicus, suppress endoplasmic reticulum stress. Org Lett 12:5012

    Article  CAS  Google Scholar 

  149. Yang ML, Kuo PC, Hwang TL, TS W (2011) Anti-inflammatory principles from Cordyceps sinensis. J Nat Prod 74:1996

    Article  CAS  Google Scholar 

  150. Gomez-Prado RA, Miranda LD (2013) Concise total synthesis of hericerin natural product. Tetrahedron Lett 54:2131

    Article  CAS  Google Scholar 

  151. Kobayashi S, Inoue T, Ando A, Tamanoi H, Ryu I, Masuyama A (2012) Total synthesis and structural revision of hericerin. J Org Chem 77:5819

    Article  CAS  Google Scholar 

  152. Miyazawa M, Takahashi T, Horibe I, Ishikawa R (2012) Two new aromatic compounds and a new d-arabinitol ester from the mushroom Hericium erinaceum. Tetrahedron 68:2007

    Article  CAS  Google Scholar 

  153. Kim KH, Noh HJ, Choi SU, Lee KR (2012) Isohericenone, a new cytotoxic isoindolinone alkaloid from Hericium erinaceum. J Antibiot 65:575

    Article  CAS  Google Scholar 

  154. Wang K, Bao L, Ma K, Liu N, Huang Y, Ren JW, Wang WZ, Liu HW (2015) Eight new alkaloids with PTP1B and α-glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus. Tetrahedron 71:9557

    Article  CAS  Google Scholar 

  155. Wang K, Bao L, Qi QY, Zhao F, Ma K, Pei YF, Liu HW (2015) Erinacerins C–L, isoindolin-1-ones with α-glucosidase inhibitory activity from cultures of the medicinal mushroom Hericium erinaceus. J Nat Prod 78:146

    Article  CAS  Google Scholar 

  156. Wang XL, Xu KP, Long HP, Zou H, Cao XZ, Zhang K, JZ H, He SJ, Zhu GZ, He XA, PS X, Tan GS (2016) New isoindolinones from the fruiting bodies of Hericium erinaceum. Fitoterapia 111:58

    Article  CAS  Google Scholar 

  157. Lee IK, Kim SE, Yeom JH, Ki DW, Lee MS, Song JG, Kim YS, Seok SJ, Yun BS (2012) Daldinan A, a novel isoindolinone antioxidant from the Ascomycete Daldinia concentrica. J Antibiot 65:95

    Article  CAS  Google Scholar 

  158. Choomuenwai V, Beattie KD, Healy PC, Andrews KT, Fechner N, Davis RA (2015) Entonalactams A–C: isoindolinone derivatives from an Australian rainforest fungus belonging to the genus Entonaema. Phytochemistry 117:10

    Article  CAS  Google Scholar 

  159. Lu WW, Gao YJ, Su MZ, Luo Z, Zhang W, Shi GB, Zhao QC (2013) Isoindolones from Lasiosphaera fenzlii REICH. and their bioactivities. Helv Chim Acta 96:109

    Article  CAS  Google Scholar 

  160. Yu JG, Chen RY, Yao ZX, Zhai YF, Yang SL, Ma JL (1990) Studies on constituents of Ganoderma capense IV. The chemical structures of ganoine, ganodine and ganoderpurine. Acta Pharm Sin 25:612

    CAS  Google Scholar 

  161. Liu C, Zhao F, Chen RY (2010) A novel alkaloid from the fruiting bodies of Ganoderma sinense Zhao, Xu et Zhang. Chin Chem Lett 21:197

    Article  CAS  Google Scholar 

  162. Liu JQ, Wang CF, Peng XR, Qiu MH (2011) New alkaloids from the fruiting bodies of Ganoderma sinense. Nat Prod Bioprospect 1:93

    Article  CAS  Google Scholar 

  163. Zhao ZZ, Chen HP, Feng T, Li ZH, Dong ZJ, Liu JK (2015) Lucidimine A-D, four new alkaloids from the fruiting bodies of Ganoderma lucidum. J Asian Nat Prod Res 17:1160

    Article  CAS  Google Scholar 

  164. Dai WF, Guo PX, ZC T, Li RT, Cheng YX (2015) Five new compounds from the fungus Ganoderma petchii. Fitoterapia 106:68

    Article  CAS  Google Scholar 

  165. Isaka M, Srisanoh U, Sappan M, Supothina S, Boonpratuang T (2012) Sterostreins F–O, illudalanes and norilludalanes from cultures of the basidiomycete Stereumostrea BCC 22955. Phytochemistry 79:116

    Article  CAS  Google Scholar 

  166. Nasini G, Arnone A, Bava A, Musso L (2012) Isolation and structure elucidation of aza-sesquiterpenoids of protoilludane origin formed by shaken cultures of the fungus Clavicorona divaricata. Phytochem Lett 5:224

    Article  CAS  Google Scholar 

  167. Isaka M, Yangchum A, Supothina S, Chanthaket R, Srikitikulchai P (2014) Isopimaranes and eremophilanes from the wood-decay fungus Xylaria allantoidea BCC 23163. Phytochem Lett 8:59

    Article  CAS  Google Scholar 

  168. Richter C, Helaly SE, Thongbai B, Hyde KD, Stadler M (2016) Pyristriatins A and B: pyridino-cyathane antibiotics from the basidiomycete Cyathus cf. striatus. J Nat Prod 79:1684

    Article  CAS  Google Scholar 

  169. Herrmann A, Hedman H, Rosen J, Jansson D, Haraldsson B, Hellenas KE (2012) Analysis of the mushroom nephrotoxin orellanine and its glucosides. J Nat Prod 75:1690

    Article  CAS  Google Scholar 

  170. Ou YX, Li YY, Qian XM, Shen YM (2012) Guanacastane-type diterpenoids from Coprinus radians. Phytochemistry 78:190

    Article  CAS  Google Scholar 

  171. Xu ZY, Wu ZA, Bi KS (2013) A novel norsesquiterpene alkaloid from the mushroom-forming fungus Flammulina velutipes. Chin Chem Lett 24:57

    Article  CAS  Google Scholar 

  172. Yang NN, Huang SZ, Ma QY, Dai HF, Guo ZK, Yu ZF, Zhao YX (2015) A new pyrrole alkaloid from Leccinum extremiorientale. Chem Nat Compd 51:730

    Article  CAS  Google Scholar 

  173. Wang YC, Zhang YW, Zheng LH, Bao YL, Wu Y, Yu CL, Huang YX, Sun LG, Zhang Y, Jia XJ, Li YX (2013) Four new alkaloids from the fermentation broth of Armillaria mellea. Helv Chim Acta 96:330

    Article  CAS  Google Scholar 

  174. Xiong J, Huang Y, Wu XY, Liu XH, Fan H, Wang W, Zhao Y, Yang GX, Zhang HY, Hu JF (2016) Chemical constituents from the fermented mycelia of the medicinal fungus Xylaria nigripes. Helv Chim Acta 99:83

    Article  CAS  Google Scholar 

  175. Li M, Xiong J, Huang Y, Wang LJ, Tang Y, Yang GX, Liu XH, Wei BG, Fan H, Zhao Y, Zhai WZ, Hu JF (2015) Xylapyrrosides A and B, two rare sugar-morpholine spiroketal pyrrole-derived alkaloids from Xylaria nigripes: isolation, complete structure elucidation, and total syntheses. Tetrahedron 71:5285

    Article  CAS  Google Scholar 

  176. Liu XM, Frydenvang K, Liu HZ, Zhai L, Chen M, Olsen CE, Christensen SB (2015) Iminolactones from Schizophyllum commune. J Nat Prod 78:1165

    Article  CAS  Google Scholar 

  177. Jensen CM, Chow HQ, Chen M, Zhai L, Frydenvang K, Liu HZ, Franzyk H, Christensen SB (2016) Iminolactones as tools for inversion of the absolute configuration of α-amino acids and as inhibitors of cancer cell proliferation. Eur J Med Chem 114:118

    Article  CAS  Google Scholar 

  178. Pettit GR, Meng YH, Pettit RK, Herald DL, Cichacz ZA, Doubek DL, Richert L (2010) Isolation and structure of coprinastatin 1 from Coprinus cinereus. J Nat Prod 73:388

    Article  CAS  Google Scholar 

  179. Li LF, Chan BCL, Yue GGL, Lau CBS, Han QB, Leung PC, Liu JK, Fung KP (2013) Two immunosuppressive compounds from the mushroom Rubinoboletus ballouii using human peripheral blood mononuclear cells by bioactivity-guided fractionation. Phytomedicine 20:1196

    Article  CAS  Google Scholar 

  180. Haraguchi A, Kinoshita K, Fukai M, Koyama K (2015) A novel nucleoside from the edible mushroom, Tricholoma japonicum. J Nat Med 69:584

    Article  Google Scholar 

  181. Araya H, Nagai Y, Otaka J (2014) Isolation of (2S,4R)-2-amino-4-methyl-hex-5-enoic acid, a nonprotein amino acid, as an allelochemical from the fruiting bodies of Boletus fraternus Peck. J Plant Interact 9:627

    Article  CAS  Google Scholar 

  182. Roberts A, Beaumont C, Manzarpour A, Mantle P (2016) Purpurolic acid: a new natural alkaloid from Claviceps purpurea (Fr.) Tul. Fungal Biol 120:104

    Article  CAS  Google Scholar 

  183. Kluepfel D, Vezina C, Sehgal SN, Kudelski A, Charest MP, Bagli J (1972) Myriocin, a new antifungal antibiotic from Myriococcum albomyces. J Antibiot 25:109

    Article  CAS  Google Scholar 

  184. Krasnoff SB, Reategui RF, Wagenaar MM, Gloer JB, Gibson DM (2005) Cicadapeptins I and II: new Aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda. J Nat Prod 68:50

    Article  CAS  Google Scholar 

  185. Chiba K, Adachi K (2012) Discovery of fingolimod, the sphingosine 1-phosphate receptor modulator and its application for the therapy of multiple sclerosis. Future Med Chem 4:771

    Article  CAS  Google Scholar 

  186. Strader CR, Pearce CJ, Oberlies NH (2011) Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J Nat Prod 74:900

    Article  CAS  Google Scholar 

  187. Takata T, Hasegawa T, Tatsuno T, Date J, Ishigaki Y, Nakamura Y, Tomosugi N, Takano F, Ohta T (2009) Isolation of N-acetylneuraminic acid and N-glycolylneuraminic acid from Pleurocybella porrigens. J Health Sci 55:373

    Article  CAS  Google Scholar 

  188. Kawaguchi T, Suzuki T, Kobayashi Y, Kodani S, Hirai H, Nagai K, Kawagishi H (2010) Unusual amino acid derivatives from the mushroom Pleurocybella porrigens. Tetrahedron 66:504

    Article  CAS  Google Scholar 

  189. Wakimoto T, Asakawa T, Akahoshi S, Suzuki T, Nagai K, Kawagishi H, Kan T (2011) Proof of the existence of an unstable amino acid: pleurocybellaziridine in Pleurocybella porrigens. Angew Chem Int Ed 50:1168

    Article  CAS  Google Scholar 

  190. Zhou ZY, Shi GQ, Fontaine R, Wei K, Feng T, Wang F, Wang GQ, Qu Y, Li ZH, Dong ZJ, Zhu HJ, Yang ZL, Zeng G, Liu JK (2012) Evidence for the natural toxins from the mushroom Trogia venenata as a cause of sudden unexpected death in Yunnan Province, China. Angew Chem Int Ed 51:2368

    Article  CAS  Google Scholar 

  191. Matsuura M, Saikawa Y, Inui K, Nakae K, Igarashi M, Hashimoto K, Nakata M (2009) Identification of the toxic trigger in mushroom poisoning. Nat Chem Biol 5:465

    Article  CAS  Google Scholar 

  192. Chen XL, Wu M, Ti HH, Wei XY, Li TH (2011) Three new 3,6-dioxygenated diketopiperazines from the basidiomycete Lepista sordida. Helv Chim Acta 94:1426

    Article  CAS  Google Scholar 

  193. Barros BA, De Oliveira MCF, Mafezoli J, Barbosa FG, Rodrigues E (2012) Secondary metabolite production by the basidiomycete, Lentinus strigellus, under different culture conditions. Nat Prod Commun 7:771

    Google Scholar 

  194. Herath HMTB, Jacob M, Wilson AD, Abbas HK, Nanayakkara NPD (2013) New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens. Nat Prod Res 27:1562

    Article  CAS  Google Scholar 

  195. Wang YC, Zhang YW, Zheng LH, Bao YL, Wu Y, Yu CL, Sun LG, Zhang Y, Huang YX, Sun Y, Li YX (2013) A new compound from liquid fermentation broth of Armillaria mellea and the determination of its absolute configuration. J Asian Nat Prod Res 15:203

    Article  CAS  Google Scholar 

  196. Wang XN, Huang WY, Du JC, Li CY, Liu JK (2014) Chemical constituents from the fruiting bodies of Xylaria euglossa Fr. and its chemotaxonomic study. Biochem Syst Ecol 54:157

    Article  CAS  Google Scholar 

  197. Yin X, Feng T, Li ZH, Su J, Li Y, Tan NH, Liu JK (2011) Chemical investigation on the cultures of the fungus Xylaria carpophila. Nat Prod Bioprospect 1:75

    Article  CAS  Google Scholar 

  198. Vanyolos A, Dekany M, Kovacs B, Kramos B, Berdi P, Zupko I, Hohmann J, Beni Z (2016) Gymnopeptides A and B, cyclic octadecapeptides from the mushroom Gymnopus fusipes. Org Lett 18:2688

    Article  CAS  Google Scholar 

  199. Li Y, Ma YT, Kuang Y, Gao JM, Qin JC (2010) Pecipamide, a new sphingosine derivative from the cultures of Polyporus picipes (Basidiomycetes). Lipids 45:457

    Article  CAS  Google Scholar 

  200. Lee SR, Jung K, Noh HJ, Park YJ, Lee HL, Lee KR, Kang KS, Kim KH (2015) A new cerebroside from the fruiting bodies of Hericiumerinaceus and its applicability to cancer treatment. Bioorg Med Chem Lett 25:5712

    Article  CAS  Google Scholar 

  201. Zhao LY, Zuo W, Fu QB, Zhao LJ, Zhu WL, Luo DQ (2010) Chemical constituents from fruit body of Lactarius vellereus. Chin Tradit Herb Drugs 10:5

    Google Scholar 

  202. Choi JH, Ozawa N, Yamakawa Y, Nagai K, Hirai H, Kawagishi H (2011) Leccinine A, an endoplasmic reticulum stress-suppressive compound from the edible mushroom Leccinum extremiorientale. Tetrahedron 67:6649

    Article  CAS  Google Scholar 

  203. Ueguchi Y, Matsunami K, Otsuka H, Kondo K (2011) Constituents of cultivated Agaricus blazei. J Nat Med 65:307

    Article  CAS  Google Scholar 

  204. Intaraudom C, Boonyuen N, Supothina S, Tobwor P, Prabpai S, Kongsaeree P, Pittayakhajonwut P (2013) Novel spiro-sesquiterpene from the mushroom Anthracophyllum sp. BCC18695. Phytochem Lett 6:345

    Article  CAS  Google Scholar 

  205. Afrin S, Rakib MA, Kim BH, Kim JO, Ha YL (2016) Eritadenine from edible mushrooms inhibits activity of angiotensin-converting enzyme in vitro. J Agric Food Chem 64:2263

    Article  CAS  Google Scholar 

  206. Li W, Zhou W, Lee DS, Shim SH, Kim YC, Kim YH (2014) Hericirine, a novel anti-inflammatory alkaloid from Hericium erinaceum. Tetrahedron Lett 55:4086

    Article  CAS  Google Scholar 

  207. Liu DZ, Li JG, Zhang MW, Liu G (2014) Two new alkaloids from the edible macrofungus Ramaria madagascariensis. J Basic Microbiol 54:S70

    Article  CAS  Google Scholar 

  208. Liu DZ, Li JG, Zhang MW, Liu G (2015) New bicyclic hemiacetals from the edible mushroom Ramaria madagascariensis. J Antibiot 68:137

    Article  CAS  Google Scholar 

  209. Lin KW, Maitraie D, Huang AM, Wang JP, Lin CN (2016) Triterpenoids and an alkamide from Ganoderma tsugae. Fitoterapia 108:73

    Article  CAS  Google Scholar 

  210. Zhang LH, Feng BM, Chen G, Li SG, Sun Y, Wu HH, Bai J, Hua HM, Wang HF, Pei YH (2016) Sporulaminals A and B: a pair of unusual epimeric spiroaminal derivatives from a marine-derived fungus Paraconiothyrium sporulosum YK-03. RSC Adv 6:42361

    Article  CAS  Google Scholar 

  211. Chen ZM, Fan QY, Yin X, Yang XY, Li ZH, Feng T, Liu JK (2014) Three new humulane sesquiterpenes from cultures of the fungus Antrodiella albocinnamomea. Nat Prod Bioprospect 4:207

    Article  CAS  Google Scholar 

  212. Luo DQ, Gao Y, Gao JM, Wang F, Yang XL, Liu JK (2006) Humulane-type sesquiterpenoids from the mushroom Lactarius mitissimus. J Nat Prod 69:1354

    Article  CAS  Google Scholar 

  213. Luo DQ, Gao Y, Yang XL, Tang JG, Liu JK (2007) Highly oxidized humulane sesquiterpenes from the basidiomycete Lactarius mitissimus. J Antibiot 60:162

    Article  CAS  Google Scholar 

  214. Luo DQ, Gao Y, Yang XL, Tang JG, Zhao LY, Liu JK (2007) Two new highly oxidized humulane sesquiterpenes from the basidiomycete Lactarius mitissimus. Helv Chim Acta 90:1112

    Article  CAS  Google Scholar 

  215. Hu L, Liu JK (2002) The first humulene type sesquiterpene from Lactarius hirtipes. Z Naturforsch C 57:571

    Google Scholar 

  216. McMorris TC, Lira R, Gantzel PK, Kelner MJ, Dawe R (2000) Sesquiterpenes from the basidiomycete Omphalotus illudens. J Nat Prod 63:1557

    Article  CAS  Google Scholar 

  217. Zheng YB, Lu CH, Zheng ZH, Lin XJ, Su WJ, Shen YM (2008) New sesquiterpenes from edible fungus Clavicorona pyxidata. Helv Chim Acta 91:2174

    Article  CAS  Google Scholar 

  218. McMorris TC, Kashinatham A, Lira R, Rundgren H, Gantzel PK, Kelner MJ, Dawe R (2002) Sesquiterpenes from Omphalotus illudens. Phytochemistry 61:395

    Article  CAS  Google Scholar 

  219. Liu G, Romo D (2011) Total synthesis of (+)-omphadiol. Angew Chem Int Ed 50:7537

    Article  CAS  Google Scholar 

  220. Zhou LL, Yao YM, Xu WB, Liang GX (2014) Total syntheses of (±)-omphadiol and (±)-pyxidatol C through a cis-fused 5,7-carbocyclic common intermediate. J Org Chem 79:5345

    Article  CAS  Google Scholar 

  221. Clericuzio M, Cassino C, Corana F, Vidari G (2012) Terpenoids from Russula lepida and R. amarissima (Basidiomycota, Russulaceae). Phytochemistry 84:154

    Article  CAS  Google Scholar 

  222. Lee JS, Maarisit W, Abdjul DB, Yamazaki H, Takahashi O, Kirikoshi R, Kanno SI, Namikoshi M (2016) Structures and biological activities of triterpenes and sesquiterpenes obtained from Russula lepida. Phytochemistry 127:63

    Article  CAS  Google Scholar 

  223. Vidari G, Che ZL, Garlaschelli L (1998) New nardosinane and aristolane sesquiterpenes from the fruiting bodies of Russula lepida. Tetrahedron Lett 39:6073

    Article  CAS  Google Scholar 

  224. Tan JW, Dong ZJ, Hu L, Liu JK (2003) Lepidamine, the first aristolane-type sesquiterpene alkaloid from the basidiomycete Russula lepida. Helv Chim Acta 86:307

    Article  CAS  Google Scholar 

  225. Tan JW, Dong ZJ, Liu JK (2000) A new sesquiterpenoid from Russula lepida. Acta Bot Sin 43:329

    Google Scholar 

  226. Kanokmedhakul S, Lekphrom R, Kanokmedhakul K, Hahnvajanawong C, Bua-Art S, Saksirirat W, Prabpai S, Kongsaeree P (2012) Cytotoxic sesquiterpenes from luminescent mushroom Neonothopanus nambi. Tetrahedron 68:8261

    Article  CAS  Google Scholar 

  227. Kim KC, Lee IS, Yoo ID, Ha BJ (2015) Sesquiterpenes from the fruiting bodies of Ramaria formosa and their human neutrophil elastase inhibitory activity. Chem Pharm Bull 63:554

    Article  Google Scholar 

  228. Wichlacz M, Ayer WA, Trifonov LS, Chakravarty P, Khasa D (1999) Two 6,7-seco-caryophyllenes and an alloaromadendrane from liquid cultures of Hebeloma longicaudum. Phytochemistry 52:1421

    Article  CAS  Google Scholar 

  229. Huang ZL, Dan Y, Huang YC, Lin LD, Li TH, Ye WH, Wei XY (2004) Sesquiterpenes from the mycelial cultures of Dichomitus squalens. J Nat Prod 67:2121

    Article  CAS  Google Scholar 

  230. Xie HH, Xu XY, Dan Y, Wei XY (2011) Novel sesquiterpenes from the mycelial cultures of Dichomitus squalens. Helv Chim Acta 94:868

    Article  CAS  Google Scholar 

  231. Stodulkova E, Sulc M, Cisarova I, Novak P, Kolarik M, Flieger M (2008) Production of (+)-globulol needle crystals on the surface mycelium of Quambalaria cyanescens. Folia Microbiol 53:15

    Article  CAS  Google Scholar 

  232. Pornpakakul S, Suwancharoen S, Petsom A, Roengsumran S, Muangsin N, Chaichit N, Piapukiew J, Sihanonth P, Allen JW (2009) A new sesquiterpenoid metabolite from Psilocybe samuiensis. J Asian Nat Prod Res 11:12

    Article  CAS  Google Scholar 

  233. Zhu YC, Wang G, Liu JK (2010) Two new sesquiterpenoids from basidiomycete Agrocybe salicacola. J Asian Nat Prod Res 12:464

    Article  CAS  Google Scholar 

  234. Isaka M, Yangchum A, Supothina S, Boonpratuang T, Choeyklin R, Kongsaeree P, Prabpai S (2015) Aromadendrane and cyclofarnesane sesquiterpenoids from cultures of the basidiomycete Inonotus sp. BCC 23706. Phytochemistry 118:94

    Article  CAS  Google Scholar 

  235. Abraham WR, Hanssen HP, Urbasch I (1991) Lepistirones, major volatile metabolites from liquid cultures of Lepista irina (Basidiomycotina). Z Naturforsch C 46:169

    CAS  Google Scholar 

  236. Stadler M, Anke H, Sterner O (1994) New nematocidal and antimicrobial compounds from the basidiomycete Cheimonophyllum candidissimum (Berk & Curt.) Sing. 1. Producing organism, fermentation, isolation, and biological activities. J Antibiot 47:1284

    Article  CAS  Google Scholar 

  237. Stadler M, Anke H, Sterner O (1994) Six new antimicrobial and nematocidal bisabolanes from the basidiomycete Cheimonophyllum candidissimum. Tetrahedron 50:12649

    Article  CAS  Google Scholar 

  238. Zhang L, Wang F, Dong ZJ, Liu JK (2008) New bisabolane sesquiterpene from culture broth of the fungus Aleuria aurantia (Pezizaceae). Acta Bot Yunnan 30:611

    Google Scholar 

  239. Isaka M, Sappan M, Rachtawee P, Boonpratuang T (2011) A tetrahydrobenzofuran derivative from the fermentation broth of Lentinus squarrosulus BCC 22366. Phytochem Lett 4:106

    Article  CAS  Google Scholar 

  240. Asano M, Yamada K, Tanaka T, Matsuo Y, Kouno I (2013) New bisabolane sesquiterpene from the mycelia of Amanita virgineoides. Chem Pharm Bull 61:366

    Article  CAS  Google Scholar 

  241. Kobori H, Sekiya A, Yasuda N, Noguchi K, Suzuki T, Choi JH, Hirai H, Kawagishi H (2013) Armillariols A to C from the culture broth of Armillaria sp. Tetrahedron Lett 54:5481

    Article  CAS  Google Scholar 

  242. Liu S, Dong YA, Li YX, Bao L, Liu HW, Li HR (2013) Chemical constituents from the rice fermented with the edible mushroom Pleurotus eryngii and their quinone oxidoreductase 1 inducing effect. Fitoterapia 91:9

    Article  CAS  Google Scholar 

  243. Wang S, Li ZH, Dong ZJ, Liu JK, Feng T (2013) Norbisabolane and eremophilane sesquiterpenoids from cultures of the basidiomycete Polyporus ellisii. Fitoterapia 91:194

    Article  CAS  Google Scholar 

  244. Wang SJ, Bao L, Han JJ, Wang QX, Yang XL, Wen HA, Guo LD, Li SJ, Zhao F, Liu HW (2013) Pleurospiroketals A–E, perhydrobenzannulated 5,5-spiroketal sesquiterpenes from the edible mushroom Pleurotus cornucopiae. J Nat Prod 76:45

    Article  CAS  Google Scholar 

  245. Yang J, Wang N, Yuan HS, Hu JC, Dai YC (2013) A new sesquiterpene from the medicinal fungus Inonotus vaninii. Chem Nat Compd 49:261

    Article  CAS  Google Scholar 

  246. Zhao JY, Feng T, Li ZH, Dong ZJ, Zhang HB, Liu JK (2013) Sesquiterpenoids and an ergosterol from cultures of the fungus Daedaleopsis tricolor. Nat Prod Bioprospect 3:271

    Article  CAS  Google Scholar 

  247. Chen HP, Dong WB, Feng T, Yin X, Li ZH, Dong ZJ, Li Y, Liu JK (2014) Four new sesquiterpenoids from fruiting bodies of the fungus Inonotus rickii. J Asian Nat Prod Res 16:581

    Article  CAS  Google Scholar 

  248. Lee MS, Hwang BS, Lee IK, Seo GS, Yun BS (2015) Chemical constituents of the culture broth of Phellinus linteus and their antioxidant activity. Mycobiology 43:43

    Article  Google Scholar 

  249. Zheng YB, Pang HY, Wang JF, Shi GW, Huang JZ (2015) New apoptosis-inducing sesquiterpenoids from the mycelial culture of Chinese edible fungus Pleurotus cystidiosus. J Agric Food Chem 63:545

    Article  CAS  Google Scholar 

  250. Zhao ZZ, He LQ, Chen HP, Li ZH, Dong ZJ, Feng T, Liu JK (2016) A new bisabolane-type sesquiterpenoid from the fermentation broth of fungus Antrodiella gypsea. J Asian Nat Prod Res 18:184

    Article  CAS  Google Scholar 

  251. Abraham WR (2001) Bioactive sesquiterpenes produced by fungi: are they useful for humans as well. Curr Med Chem 8:583

    Article  CAS  Google Scholar 

  252. Brocksom TJ, Zanotto PR, Brocksom U (2005) The enantioselective syntheses of bisabolane sesquiterpenes lepistirone and cheimonophyllon E. Tetrahedron Lett 46:2397

    Article  CAS  Google Scholar 

  253. Takao K, Hara M, Tsujita T, Yoshida K, Tadano K (2001) Total synthesis of (+)-cheimonophyllon E, a bisabolane sesquiterpenoid. Tetrahedron Lett 42:4665

    Article  CAS  Google Scholar 

  254. Takao K, Tsujita T, Hara M, Tadano K (2002) Asymmetric total syntheses of (+)-cheimonophyllon E and (+)-cheimonophyllal. J Org Chem 67:6690

    Article  CAS  Google Scholar 

  255. Hanssen HP (1982) Sesquiterpene hydrocarbons from Lentinus lepideus. Phytochemistry 21:1159

    Article  CAS  Google Scholar 

  256. Abraham WR, Hanssen HP, Mohringer C (1988) Novel sesquiterpene ethers from liquid cultures of the wood-rotting fungus Lentinus lepideus. Z Naturforsch C 43:24

    CAS  Google Scholar 

  257. Vaneijk GW, Roeijmans HJ, Verwiel PEJ (1984) Isolation and identification of the sesquiterpenoid (+)-torreyol from Xylobolus frustulatus. Exp Mycol 8:273

    Article  CAS  Google Scholar 

  258. Arnone A, Colombo A, Nasini G, Meille SV (1993) Eleganthol, a sesquiterpene from Clitocybe elegans. Phytochemistry 32:1493

    Article  CAS  Google Scholar 

  259. Hirotani M, Ino C, Hatano A, Takayanagi H, Furuya T (1995) Ganomastenol A, ganomastenol B, ganomastenol C and ganomastenol D, cadinene sesquiterpenes, from Ganoderma mastoporum. Phytochemistry 40:161

    Article  CAS  Google Scholar 

  260. Zapf S, Wunder A, Anke T, Klostermeyer D, Steglich W, Shan R, Sterner O, Scheuer W (1996) (+)-10α-Hydroxy-4-muurolen-3-one, a new inhibitor of leukotriene biosynthesis from a Favolaschia species. Comparison with other sesquiterpenes. Z Naturforsch C 51:487

    CAS  Google Scholar 

  261. Gruhn N, Schoettler S, Sterner O, Anke T (2007) Biologically active metabolites from the basidiomycete Limacella illinita (Fr.) Murr. Z Naturforsch C 62:808

    Article  CAS  Google Scholar 

  262. Hiramatsu F, Murayama T, Koseki T, Funakoshi T, Shiono Y (2011) Cadinane sesquiterpenoids, strobilols L and M, from Strobilurus ohshimae. Nat Prod Res 25:781

    Article  CAS  Google Scholar 

  263. Hiramatsu F, Murayama T, Koseki T, Okada K, Shiono Y (2008) Cadinane-type sesquiterpenoids, strobilols E-K, from the liquid culture of Strobilurus ohshimae. Helv Chim Acta 91:1595

    Article  CAS  Google Scholar 

  264. Hiramatsu F, Murayama T, Koseki T, Shiono Y (2007) Strobilols A-D: four cadinane-type sesquiterpenes from the edible mushroom Strobilurus ohshimae. Phytochemistry 68:1267

    Article  CAS  Google Scholar 

  265. Shiono Y, Hiramatsu F, Murayama T, Koseki T, Funakoshi T, Ueda K, Yasuda H (2007) Two drimane-type sesquiterpenes, strobilactones A and B, from the liquid culture of the edible mushroom Strobilurus ohshimae. Z Naturforsch B 62:1585

    Article  CAS  Google Scholar 

  266. Liu DZ, Wang F, Yang LM, Zheng YT, Liu JK (2007) A new cadinane sesquiterpene with significant anti-HIV-1 activity from the cultures of the basidiomycete Tyromyces chioneus. J Antibiot 60:332

    Article  CAS  Google Scholar 

  267. Bunyapaiboonsri T, Yoiprommarat S, Nopgason R, Komwijit S, Veeranondha S, Puyngain P, Boonpratuang T (2014) Cadinane sesquiterpenoids from the basidiomycete Stereum cf. sanguinolentum BCC 22926. Phytochemistry 105:123

    Article  CAS  Google Scholar 

  268. Li GH, Duan M, Yu ZF, Li L, Dong JY, Wang XB, Guo JW, Huang R, Wang M, Zhang KQ (2008) Stereumin A–E, sesquiterpenoids from the fungus Stereum sp. CCTCC af 207024. Phytochemistry 69:1439

    Article  CAS  Google Scholar 

  269. Liu FF, Li GH, Yang ZS, Zheng X, Yang Y, Zhang KQ (2010) Two new sesquiterpenes from the fungus Stereum sp. Helv Chim Acta 93:1737

    Article  CAS  Google Scholar 

  270. Zheng X, Li GH, Xie MJ, Wang X, Sun R, Lu H, Zhang KQ (2013) Stereumins K-P, sesquiterpenes from the fungus Stereum sp. CCTCC AF 2012007. Phytochemistry 86:144

    Article  CAS  Google Scholar 

  271. Ding JH, Feng T, Li ZH, Li L, Liu JK (2012) Twelve new compounds from the basidiomycete Boreostereum vibrans. Nat Prod Bioprospect 2:200

    Article  CAS  Google Scholar 

  272. Clericuzio M, Negri R, Cossi M, Gilardoni G, Gozzini D, Vidari G (2013) Cadinane sesquiterpenes from the mushroom Lyophyllum transforme. Phytochemistry 93:192

    Article  CAS  Google Scholar 

  273. Liu LY, Li ZH, Si J, Dong ZJ, Liu JK (2013) Two new sesquiterpenoids from the fungus Ceriporia alachuana. J Asian Nat Prod Res 15:300

    Article  CAS  Google Scholar 

  274. Yang XY, Feng T, Wang GQ, Ding JH, Li ZH, Li Y, He SH, Liu JK (2014) Chemical constituents from cultures of the basidiomycete Trichaptum pargamenum. Phytochemistry 104:89

    Article  CAS  Google Scholar 

  275. Yin RH, Zhao ZZ, Ji X, Dong ZJ, Li ZH, Feng T, Liu JK (2014) Steroids and sesquiterpenes from cultures of the fungus Phellinus igniarius. Nat Prod Bioprospect 5:17

    Article  CAS  Google Scholar 

  276. Guo H, Feng T, Li ZH, Liu JK (2014) Two new sesquiterpenoids from basidiomycete Tyromyces chioneus. Acta Pharm Sin 49:1578

    CAS  Google Scholar 

  277. Ding JH, Li ZH, Wei K, Dong ZJ, Ding ZH, Feng T, Liu JK (2016) Two new sesquiterpenoids from cultures of the basidiomycete Tremella foliacea. J Asian Nat Prod Res 18:46

    Article  CAS  Google Scholar 

  278. Gollnick K, Schade G, Cameron AF, Hannaway C, Robertson JM (1971) The structure of a hydrocarbon, 2,6,10,10-tetramethyltricyclo[7,2,0,02,7]undec-5-ene, obtained from caryophyllene dihydrochloride: X-ray analysis of the dibromo-derivative. J Chem Soc D Chem Commun 3:46

    Article  Google Scholar 

  279. Fabian K, Anke T, Sterner O (1999) 6,9-Dihydroxy-3(15)-caryophyllen-4,8-dione – a new antibiotic from a Marasmius species. Z Naturforsch C 54:469

    Article  CAS  Google Scholar 

  280. Wichlacz M, Ayer WA, Trifonov LS, Chakravarty P, Khasa D (1999) cis-Fused caryophyllenes from liquid cultures of Hebeloma longicaudum. Phytochemistry 51:873

    Article  CAS  Google Scholar 

  281. Evans L, Hedger J, O’Donnell G, Skelton BW, White AH, Williamson RT, Gibbons S (2010) Structure elucidation of some highly unusual tricyclic cis-caryophyllane sesquiterpenes from Marasmiellus troyanus. Tetrahedron Lett 51:5493

    Article  CAS  Google Scholar 

  282. Wichlacz M, Ayer WA, Trifonov LS, Chakravarty P, Khasa D (1999) A caryophyllene-related sesquiterpene and two 6,7-seco-caryophyllenes from liquid cultures of Hebeloma longicaudum. J Nat Prod 62:484

    Article  CAS  Google Scholar 

  283. Doi K, Shibata T, Yokoyama N, Terasawa H, Matsuda O, Kashino S (1990) Structure of naematolin C and naematolin G, novel 4,8,11,11-tetramethyltricyclo[5.4.0.02,3]undecane sesquiterpenoids. J Chem Soc Chem Commun 10:725

    Article  Google Scholar 

  284. Shiono Y, Matsuzaka R, Wakamatsu H, Muneta K, Murayama T, Ikeda M (2004) Fascicularones A and B from a mycelial culture of Naematoloma fasciculare. Phytochemistry 65:491

    Article  CAS  Google Scholar 

  285. Shiono Y, Wakamatsu H, Murayama T, Ikeda M (2004) Fascicularones C and D, tricyclo[5.4.0.02.5]undecane sesquiterpenoids from the liquid culture of Naematoloma fasciculare. Z Naturforsch B 59:119

    CAS  Google Scholar 

  286. Akasaka F, Shiono Y, Murayama T, Ikeda M (2005) Fascicularones H-K, four new sesquiterpenoids from the cultured mycelia of the fungus Hypholoma fasciculare. Helv Chim Acta 88:2944

    Article  CAS  Google Scholar 

  287. Shiono Y, Akasaka H, Hiramatsu F, Sato K, Murayama T, Ikeda M (2005) Three sesquiterpenoids, fascicularones E, F, and G produced by the fungus Hypholoma fasciculare. Z Naturforsch B 60:880

    CAS  Google Scholar 

  288. Liu R, Zhou ZY, Xu D, Wang F, Lin JK (2009) A new tricyclo[6.3.1.02.5]dodecane sesquiterpene from cultures of the basidiomycete Campanella junghuhnii. Helv Chim Acta 92:375

    Article  CAS  Google Scholar 

  289. Simon B, Anke T, Anders U, Neuhaus M, Hansske E (1995) Collybial, a new antibiotic sesquiterpenoid from Collybia confluens (Basidiomycetes). Z Naturforsch C 50:173

    CAS  Google Scholar 

  290. Ishikawa NK, Fukushi Y, Yamaji K, Tahara S, Takahashi K (2001) Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of Flammulina velutipes. J Nat Prod 64:932

    Article  CAS  Google Scholar 

  291. Ishikawa NK, Yamaji K, Tahara S, Fukushi Y, Takahashi K (2000) Highly oxidized cuparene-type sesquiterpenes from a mycelial culture of Flammulina velutipes. Phytochemistry 54:777

    Article  CAS  Google Scholar 

  292. Wang YQ, Bao L, Yang XL, Dai HQ, Guo H, Yao XS, Zhang LX, Liu HW (2012) Four new cuparene-type sesquiterpenes from Flammulina velutipes. Helv Chim Acta 95:261

    Article  CAS  Google Scholar 

  293. Johansson M, Sterner O, Labischinski H, Anke T (2001) Coprinol, a new antibiotic cuparane from a Coprinus species. Z Naturforsch C 56:31

    Article  CAS  Google Scholar 

  294. Xu GH, Kim YH, Choo SJ, Ryoo IJ, Zheng CJ, Seok SJ, Kim WG, Yoo ID (2009) Isodeoxyhelicobasidin, a novel human neutrophil elastase inhibitor from the culture broth of Volvariella bombycina. J Antibiot 62:333

    Article  CAS  Google Scholar 

  295. Surup F, Thongbai B, Kuhnert E, Sudarman E, Hyde KD, Stadler M (2015) Deconins A-E: cuparenic and mevalonic or propionic acid conjugates from the basidiomycete Deconica sp. 471. J Nat Prod 78:934

    Article  CAS  Google Scholar 

  296. Ki DW, Kim DW, Hwang BS, Lee SW, Seok SJ, Lee IK, Yun BS (2015) New antioxidant sesquiterpenes from a culture broth of Coprinus echinosporus. J Antibiot 68:351

    Article  CAS  Google Scholar 

  297. Kuwahara S, Saito M (2004) Enantioselective total synthesis of enokipodins A-D. Tetrahedron Lett 45:5047

    Article  CAS  Google Scholar 

  298. Saito M, Kuwahara S (2005) Enantioselective total synthesis of enokipodins A-D, antimicrobial sesquiterpenes produced by the mushroom, Flammulina velutipes. Biosci Biotechnol Biochem 69:374

    Article  CAS  Google Scholar 

  299. Srikrishna A, Srinivasa Rao M (2004) The first total synthesis of the antimicrobial sesquiterpenes (±)-enokipodins A and B. Synlett 2004:374

    Article  CAS  Google Scholar 

  300. Yoshida M, Shoji Y, Shishido K (2009) Total syntheses of enokipodins A and B utilizing palladium-catalyzed addition of an arylboronic acid to an allene. Org Lett 11:1441

    Article  CAS  Google Scholar 

  301. Maria DB, Giorgio M, Giovanni V, Paola VF, Giovanni F (1980) Uvidins, new drimane sesquiterpenes from Lactarius uvidus Fries. J Chem Soc Perkin Trans 1:221

    Google Scholar 

  302. Debernardi M, Mellerio G, Vidari G, Vitafinzi P, Fronza G (1983) Structure and chemical correlations of uvidin C, uvidin D, and uvidin E, new drimane sesquiterpenes from Lactarius uvidus Fries. J Chem Soc Perkin Trans 1:2739

    Article  Google Scholar 

  303. Kida T, Shibai H, Seto H (1986) Structure of new antibiotics, pereniporins A and B, from a basidiomycete. J Antibiot 39:613

    Article  CAS  Google Scholar 

  304. Hashimoto T, Tori M, Mizuno Y, Asakawa Y (1987) Cryptoporic acids A and B, novel bitter drimane sesquiterpenoid ethers of isocitric acid, from the fungus Cryptoporus volvatus. Tetrahedron Lett 28:6303

    Article  CAS  Google Scholar 

  305. Hashimoto T, Tori M, Mizuno Y, Asakawa Y, Fukazawa Y (1989) The superoxide release inhibitors, cryptoporic acids C, D, and E: dimeric drimane sesquiterpenoid ethers of isocitric acid from the fungus Cryptoporus volvatus. J Chem Soc Chem Commun 4:258

    Article  Google Scholar 

  306. Hirotani M, Furuya T, Shiro M (1991) Cryptoporic acid H and acid I, drimane sesquiterpenes from Ganoderma neo-japonicum and Cryptoporus volvatus. Phytochemistry 30:1555

    Article  CAS  Google Scholar 

  307. Nozoe S, Agatsuma T, Takahashi A, Ohishi H, In Y, Kusano G (1993) Roseolide A, a novel dimeric drimane sesquiterpenoid from the basidiomycete Roseoformes subflexibilis. Tetrahedron Lett 34:2497

    Article  CAS  Google Scholar 

  308. Kuschel A, Anke T, Velten R, Klostermeyer D, Steglich W, Konig B (1994) The mniopetals, new inhibitors of reverse transcriptases from a Mniopetalum species (Basidiomycetes). 1. Producing organism, fermentation, isolation and biological activities. J Antibiot 47:733

    Article  CAS  Google Scholar 

  309. Velten R, Klostermeyer D, Steffan B, Steglich W, Kuschel A, Anke T (1994) The mniopetals, new inhibitors of reverse transcriptases from a Mniopetalum species (Basidiomycetes). 2. Structure elucidation. J Antibiot 47:1017

    Article  CAS  Google Scholar 

  310. Ayer WA, Craw PC, Stout TJ, Clardy JC (1989) Novel sesquiterpenoids from the fairy ring fungus, Marasmius oreades. Can J Chem 67:773

    Article  CAS  Google Scholar 

  311. Erkel G, Lorenzen K, Anke T, Velten R, Gimenez A, Steglich W (1995) Kuehneromycins A and B, two new biological active compounds from a Tasmanian Kuehneromyces sp. (Strophariaceae, Basidiomycetes). Z Naturforsch C 50:1

    Article  CAS  Google Scholar 

  312. Lorenzen K, Anke T, Anders U, Hindermayr H, Hansske F (1994) Two inhibitors of platelet-aggregation from a Panus species (Basidiomycetes). Z Naturforsch C 49:132

    CAS  Google Scholar 

  313. Morita Y, Hayashi Y, Sumi Y, Kodaira A, Shibata H (1995) Haploporic acid A, a novel dimeric drimane sesquiterpenoid from the basidiomycete Haploporus odorus. Biosci Biotechnol Biochem 59:2008

    Article  CAS  Google Scholar 

  314. Fleck WF, Schlegel B, Hoffmann P, Ritzau M, Heinze S, Gräfe U (1996) Isolation of isodrimenediol, a possible intermediate of drimane biosynthesis from Polyporus arcularius. J Nat Prod 59:780

    Article  CAS  Google Scholar 

  315. Cabrera GM, Roberti MJ, Wright JE, Seldes AM (2002) Cryptoporic and isocryptoporic acids from the fungal cultures of Polyporus arcularius and P. ciliatus. Phytochemistry 61:189

    Article  CAS  Google Scholar 

  316. Kim YH, Yun BS, Ryoo IJ, Kim JP, Koshino H, Yoo ID (2006) Methoxylaricinolic acid, a new sesquiterpene from the fruiting bodies of Stereum ostrea. J Antibiot 59:432

    Article  CAS  Google Scholar 

  317. Wangun HVK, Dorfelt H, Hertweck C (2006) Nebularic acids and nebularilactones, novel drimane sesquiterpenoids from the fungus Lepista nebularis. Eur J Org Chem:1643

    Google Scholar 

  318. Xu D, Sheng Y, Zhou ZY, Liu R, Leng Y, Liu JK (2009) Sesquiterpenes from cultures of the basidiomycete Clitocybe conglobata and their 11β-hydroxysteroid dehydrogenase inhibitory activity. Chem Pharm Bull 57:433

    Article  CAS  Google Scholar 

  319. Meng J, Li YY, Ou YX, Song LF, Lu CH, Shen YM (2011) New sesquiterpenes from Marasmius cladophyllus. Mycology 2:30

    Article  CAS  Google Scholar 

  320. Wu W, Zhao F, Bao L, Lu JC, Liu HW (2011) Two new cryptoporic acid derivatives from the fruiting bodies of Cryptoporus sinensis. Helv Chim Acta 94:2020

    Article  CAS  Google Scholar 

  321. Wu W, Zhao F, Ding R, Bao L, Gao H, Lu JC, Yao XS, Zhang XQ, Liu HW (2011) Four new cryptoporic acid derivatives from the fruiting bodies of Cryptoporus sinensis, and their inhibitory effects on nitric oxide production. Chem Biodivers 8:1529

    Article  CAS  Google Scholar 

  322. Lee LW, Wang GJ, Lin MH, Ju YM, Lin YW, Chen FY, Lee TH (2013) Isolation and characterization of sesquiterpenes from Arecophila saccharicola YMJ96022401 with NO production inhibitory activity. Phytochemistry 85:129

    Article  CAS  Google Scholar 

  323. Liermann JC, Thines E, Opatz T, Anke H (2012) Drimane sesquiterpenoids from Marasmius sp. inhibiting the conidial germination of plant-pathogenic fungi. J Nat Prod 75:1983

    Article  CAS  Google Scholar 

  324. Ding JH, Feng T, Li ZH, Si J, Yu HY, Zhang HB, Liu JK (2013) Four new sesquiterpenoids from cultures of the fungus Funalia trogii. J Asian Nat Prod Res 15:828

    Article  CAS  Google Scholar 

  325. Otaka J, Araya H (2013) Two new isodrimene sesquiterpenes from the fungal culture broth of Polyporus arcularius. Phytochem Lett 6:598

    Article  CAS  Google Scholar 

  326. Yang XY, Feng T, Ding JH, Li ZH, Li Y, Fan QY, Liu JK (2013) Two new drimane sesquiterpenoids from cultures of the basidiomycete Trichaptum biforme. Nat Prod Bioprospect 3:154

    Article  CAS  Google Scholar 

  327. Yoshikawa K, Koso K, Shimomura M, Tanaka M, Yamamoto H, Imagawa H, Arihara S, Hashimoto T (2013) Yellow pigments, fomitellanols A and B, and drimane sesquiterpenoids, cryptoporic acids P and Q, from Fomitella fraxinea and their inhibitory activity against COX and 5-LO. Molecules 18:4181

    Article  CAS  Google Scholar 

  328. Zhao JY, Ding JH, Li ZH, Dong ZJ, Feng T, Zhang HB, Liu JK (2013) Two new sesquiterpenes from cultures of the basidiomycete Agaricus arvensis. J Asian Nat Prod Res 15:305

    Article  CAS  Google Scholar 

  329. Guo HY, Lu YD, Li ZH, Wang G, Liu JK (2014) A new drimane-type sesquiterpenoid from fermentation broth of Fomitiporia punicata. Nat Prod Res Dev 26:6

    CAS  Google Scholar 

  330. He JB, Feng T, Zhang S, Dong ZJ, Li ZH, Zhu HJ, Liu JK (2014) Seven new drimane-type sesquiterpenoids from cultures of fungus Phellinus tuberculosus. Nat Prod Bioprospect 4:21

    Article  CAS  Google Scholar 

  331. Isaka M, Chinthanom P, Danwisetkanjana K, Choeyklin R (2014) A new cryptoporic acid derivative from cultures of the basidiomycete Poria albocincta BCC 26244. Phytochem Lett 7:97

    Article  CAS  Google Scholar 

  332. Ying YM, Zhang LY, Zhang X, Bai HB, Liang DE, Ma LF, Shan WG, Zhan ZJ (2014) Terpenoids with α-glucosidase inhibitory activity from the submerged culture of Inonotus obliquus. Phytochemistry 108:171

    Article  CAS  Google Scholar 

  333. Zhao ZZ, Chen HP, Feng T, Li ZH, Dong ZJ, Liu JK (2014) Four new sesquiterpenoids from cultures of the fungus Phellinidium sulphurascens. Nat Prod Bioprospect 5:23

    Article  CAS  Google Scholar 

  334. Wang JC, Li GZ, Lv N, Shen LG, Shi LL, Si JY (2016) Cryptoporic acid S, a new drimane-type sesquiterpene ether of isocitric acid from the fruiting bodies of Cryptoporus volvatus. J Asian Nat Prod Res 19:719

    Google Scholar 

  335. Wang J, Li G, Gao L, Cao L, Lv N, Shen L, Si J (2015) Two new cryptoporic acid derivatives from the fruiting bodies of Cryptoporus volvatus. Phytochem Lett 14:63

    Article  CAS  Google Scholar 

  336. Zhang JW, Wen GL, Zhang L, Duan DM, Ren ZH (2015) Sulphureuine B, a drimane type sesquiterpenoid isolated from Laetiporus sulphureus induces apoptosis in glioma cells. Bangladesh J Pharmacol 10:844

    Article  CAS  Google Scholar 

  337. Li XM, Yin X, Li ZH, Feng T, Liu JK (2015) A new drimane sesquiterpenoid from cultures of fungus Psathyrella candolleana. Nat Prod Res Dev 27:1131

    CAS  Google Scholar 

  338. Wang J, Li G, Lv N, Gao L, Cao L, Shen L, Si JY (2016) Chemical constituents from the fruiting bodies of Cryptoporus volvatus. Arch Pharm Res 39:747

    Article  CAS  Google Scholar 

  339. Kuhne B, Hanssen HP, Abraham WR, Wray V (1991) A phytotoxic eremophilane ether from Hypomyces odoratus. Phytochemistry 30:1463

    Article  Google Scholar 

  340. Urbasch I, Kühne B, Hanssen HP, Abraham WR (1991) Fungicidal activity of hypodoratoxide from Hypomyces odoratus. Planta Med 57:A18

    Article  Google Scholar 

  341. Singh SB, Zink D, Polishook J, Valentino D, Shafiee A, Silverman K, Felock P, Teran A, Vilella D, Hazuda DJ, Lingham RB (1999) Structure and absolute stereochemistry of HIV-1 integrase inhibitor integric acid. A novel eremophilane sesquiterpenoid produced by a Xylaria sp. Tetrahedron Lett 40:8775

    Article  CAS  Google Scholar 

  342. Srisapoomi T, Ichiyanagi T, Nakajima H, Aimi T, Boonlue S (2015) Biological activities of integric acid isolated from the wood-decay fungus Xylaria feejeensis 2FB-PPM08M. Chiang Mai J Sci 42:70

    Google Scholar 

  343. Srisapoomi T, Ichiyanagi T, Nakajima H, Aimi T, Boonlue S (2015) Biosynthesis of integric acid isolated from the wood-decay fungus Xylaria feejeensis 2FB-PPM08M. Curr Microbiol 70:550

    Article  CAS  Google Scholar 

  344. Smith CJ, Morin NR, Bills GF, Dombrowski AW, Salituro GM, Smith SK, Zhao A, MacNeil DJ (2002) Novel sesquiterpenoids from the fermentation of Xylaria persicaria are selective ligands for the NPY Y5 receptor. J Org Chem 67:5001

    Article  CAS  Google Scholar 

  345. Mierau V, Anke T, Sterner O (2003) Dacrymenone and VM 3298-2 – new antibiotics with antibacterial and antifungal activity. Z Naturforsch C 58:541

    Article  CAS  Google Scholar 

  346. Isaka M, Chinthanom P, Boonruangprapa T, Rungjindamai N, Pinruan U (2010) Eremophilane-type sesquiterpenes from the fungus Xylaria sp. BCC 21097. J Nat Prod 73:683

    Article  CAS  Google Scholar 

  347. Li YY, Hu ZY, Lu CH, Shen YM (2010) Four new terpenoids from Xylaria sp. 101. Helv Chim Acta 93:796

    Article  CAS  Google Scholar 

  348. Isaka M, Srisanoh U, Sappan M, Kongthong S, Srikitikulchai P (2012) Eremophilane and eudesmane sesquiterpenoids and a pimarane diterpenoid from the wood-decay fungus Xylaria sp. BCC 5484. Phytochem Lett 5:78

    Article  CAS  Google Scholar 

  349. Kawagishi H, Ishiyama D, Mori H, Sakamoto H, Ishiguro Y, Furukawa S, Li JX (1997) Dictyophorines A and B, two stimulators of NGF-synthesis from the mushroom Dictyophora indusiata. Phytochemistry 45:1203

    Article  CAS  Google Scholar 

  350. Kodani S, Hayashi K, Hashimoto M, Kimura T, Dombo M, Kawagishi H (2009) New sesquiterpenoid from the mushroom Sparassis crispa. Biosci Biotechnol Biochem 73:228

    Article  CAS  Google Scholar 

  351. Wang YQ, Yang XL, Bao L, Gao H, Yao XS, Liu HW (2012) Isolation and identification of secondary metabolites from the solid culture of Flammulina velutipes. Mycosystema 31:127

    CAS  Google Scholar 

  352. Song AR, Sun XL, Kong C, Zhao C, Qin D, Huang F, Yang S (2014) Discovery of a new sesquiterpenoid from Phellinus ignarius with antiviral activity against influenza virus. Arch Virol 159:753

    Article  CAS  Google Scholar 

  353. Kuhnert E, Surup F, Wiebach V, Bernecker S, Stadler M (2015) Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii. Phytochemistry 117:116

    Article  CAS  Google Scholar 

  354. Yang NN, Ma QY, Huang SZ, Dai HF, Guo ZK, XH L, Wang YG, ZF Y, Zhao YX (2015) Chemical constituents from cultures of the fungus Marasmiellus ramealis (Bull.) Singer. J Braz Chem Soc 26:9

    CAS  Google Scholar 

  355. Singh SB, Felock P, Hazuda DJ (2000) Chemical and enzymatic modifications of integric acid and HIV-1 integrase inhibitory activity. Bioorg Med Chem Lett 10:235

    Article  CAS  Google Scholar 

  356. Stadler M, Anke T, Dasenbrock J, Steglich W (1993) Phellodonic acid, a new biologically-active hirsutane derivative from Phellodon melaleucus (Thelephoraceae, Basidiomycetes). Z Naturforsch C 48:545

    CAS  Google Scholar 

  357. Abraham WR, Abate D (1995) Chromanones from Lentinus crinitus (Basidiomycetes). Z Naturforsch C 50:748

    CAS  Google Scholar 

  358. Rukachaisirikul V, Tansakul C, Saithong S, Pakawatchai C, Isaka M, Suvannakad R (2005) Hirsutane sesquiterpenes from the fungus Lentinus connatus BCC 8996. J Nat Prod 68:1674

    Article  CAS  Google Scholar 

  359. Yun BS, Lee IK, Cho Y, Cho SM, Yoo ID (2002) New tricyclic sesquiterpenes from the fermentation broth of Stereum hirsutum. J Nat Prod 65:786

    Article  CAS  Google Scholar 

  360. Yoo NH, Kim JP, Yun BS, Ryoo IJ, Lee IK, Yoon ES, Koshino H, Yoo ID (2006) Hirsutenols D, E and F, new sesquiterpenes from the culture broth of Stereum hirsutum. J Antibiot 59:110

    Article  CAS  Google Scholar 

  361. Birnbacher J, Schueffler A, Deininger F, Opatz T, Anke T (2008) Isolation and biological activity of new norhirsutanes from Creolophus cirrhatus. Z Naturforsch C 63:203

    Article  CAS  Google Scholar 

  362. Opatz T, Kolshorn H, Birnbacher J, Schüffler A, Deininger F, Anke T (2007) The creolophins: a family of linear triquinanes from Creolophus cirrhatus (basidiomycete). Eur J Org Chem 2007:5546

    Article  Google Scholar 

  363. Liermann JC, Schuffler A, Wollinsky B, Birnbacher J, Kolshorn H, Anke T, Opatz T (2010) Hirsutane-type sesquiterpenes with uncommon modifications from three Basidiomycetes. J Org Chem 75:2955

    Article  CAS  Google Scholar 

  364. Asai R, Mitsuhashi S, Shigetomi K, Miyamoto T, Ubukata M (2011) Absolute configurations of (–)-hirsutanol A and (–)-hirsutanol C produced by Gloeostereum incarnatum. J Antibiot 64:693

    Article  CAS  Google Scholar 

  365. Qi QY, Bao L, Ren JW, Han JJ, Zhang ZY, Li Y, Yao YJ, Cao R, Liu HW (2014) Sterhirsutins A and B, two new heterodimeric sesquiterpenes with a new skeleton from the culture of Stereum hirsutum collected in Tibet plateau. Org Lett 16:5092

    Article  CAS  Google Scholar 

  366. Qi QY, Ren JW, Sun LW, He LW, Bao L, Yue W, Sun QM, Yao YJ, Yin WB, Liu HW (2015) Stucturally diverse sesquiterpenes produced by a Chinese Tibet fungus Stereum hirsutum and their cytotoxic and immunosuppressant activities. Org Lett 17:3098

    Article  CAS  Google Scholar 

  367. Chen ZM, Chen HP, Wang F, Li ZH, Feng T, Liu JK (2015) New triquinane and gymnomitrane sesquiterpenes from fermentation of the basidiomycete Antrodiella albocinnamomea. Fitoterapia 102:61

    Article  CAS  Google Scholar 

  368. Wang Y, Bao L, Liu D, Yang X, Li S, Gao H, Yao XS, Wen HA, Liu HW (2012) Two new sesquiterpenes and six norsesquiterpenes from the solid culture of the edible mushroom Flammulina velutipes. Tetrahedron 68:3012

    Article  CAS  Google Scholar 

  369. Mehta G, Pallavi K (2006) Total synthesis of the putative structure of the novel triquinane based sesquiterpenoid natural product dichomitol. Tetrahedron Lett 47:8355

    Article  CAS  Google Scholar 

  370. Yang JS, Wang YL, Feng XZ, Yu DQ, Liang XT (1991) Chemical constituents of Armillaria mellea. VII. Isolation and characterization of chemical constituents of the acetone extract. Acta Pharm Sin 26:117

    CAS  Google Scholar 

  371. Donnelly D, Sanada S, O’Reilly J, Polonky J, Prange T, Pascard C (1982) Isolation and structure (X-ray analysis) of the orsellinate of armillol, a new antibacterial metabolite from Armillaria mellea. J Chem Soc Chem Commun:135

    Google Scholar 

  372. Arnone A, Nasini G, Depava OV (1993) Isolation and structure elucidation of sulcatine G, a novel sesquiterpene from Laurilia sulcata. J Chem Soc Perkin Trans 1:2723

    Article  Google Scholar 

  373. Arnone A, Nasini G, Depava OV, Assante G (1992) Isolation and structure elucidation of sulcatine C, sulcatine D and sulcatine E, novel norsesquiterpenes from Laurilia sulcata, and 7-epi-sulcatine D. J Chem Soc Perkin Trans 1:615

    Article  Google Scholar 

  374. Momose I, Sekizawa R, Hosokawa N, Iinuma H, Matsui S, Nakamura H, Naganawa H, Hamada M, Takeuchi T (2000) Melleolides K, L and M, new melleolides from Armillaria mellea. J Antibiot 53:137

    Article  CAS  Google Scholar 

  375. Rasser F, Anke T, Sterner O (2000) Secondary metabolites from a Gloeophyllum species. Phytochemistry 54:511

    Article  CAS  Google Scholar 

  376. Clericuzio M, Mella M, Toma L, Finzi PV, Vidari G (2002) Atlanticones, new protoilludane sesquiterpenes from the mushroom Lactarius atlanticus (Basidiomycetes). Eur J Org Chem 2002:988

    Article  Google Scholar 

  377. Arnone A, Candiani G, Nasini G, Sinisi R (2003) Isolation and structure elucidation of new sesquiterpenes of protoilludane origin from the fungus Clavicorona divaricata. Tetrahedron 59:5033

    Article  CAS  Google Scholar 

  378. Arnone A, Gregorio DC, Meille SV, Nasini G, Sidoti G (1999) Tsugicoline E, a new polyoxygenated protoilludane sesquiterpene from the fungus Laurilia tsugicola. J Nat Prod 62:51

    Article  CAS  Google Scholar 

  379. Hirota M, Shimizu Y, Kamo T, Makabe H, Shibata H (2003) New plant growth promoters, repraesentins A, B and C, from Lactarius repraesentaneus. Biosci Biotechnol Biochem 67:1597

    Article  CAS  Google Scholar 

  380. Weber D, Erosa G, Sterner O, Anke T (2006) New bioactive sesquiterpenes from Ripartites metrodii and R. tricholoma. Z Naturforsch C 61:663

    Article  CAS  Google Scholar 

  381. Yoshikawa K, Kaneko A, Matsumoto Y, Hama H, Arihara S (2006) Russujaponols A–F, illudoid sesquiterpenes from the fruiting body of Russula japonica. J Nat Prod 69:1267

    Article  CAS  Google Scholar 

  382. Yoshikawa K, Matsumoto Y, Hama H, Tanaka M, Zhai HF, Fukuyama Y, Arihara S, Hashimoto T (2009) Russujaponols G-L, illudoid sesquiterpenes, and their neurite outgrowth promoting activity from the fruit body of Russula japonica. Chem Pharm Bull 57:311

    Article  CAS  Google Scholar 

  383. Kogl M, Brecker L, Warrass R, Mulzer J (2008) Novel protoilludane lead structure for veterinary antibiotics: total synthesis of pasteurestins A and B and assignment of their configurations. Eur J Org Chem 16:2714

    Article  CAS  Google Scholar 

  384. Tomio T, Hironobu I, Isao M, Susumu M (2002) New antibiotics pasteurestin A and B, and method for producing the same. Jap Pat 2002:212137

    Google Scholar 

  385. Misiek M, Williams J, Schmich K, Huttel W, Merfort I, Salomon CE, Aldrich CC, Hoffmeister D (2009) Structure and cytotoxicity of arnamial and related fungal sesquiterpene aryl esters. J Nat Prod 72:1888

    Article  CAS  Google Scholar 

  386. Pettit GR, Meng YH, Pettit RK, Herald DL, Hogan F, Cichacz ZA (2010) Isolation and structure of a cyclobutane-type sesquiterpene cancer cell growth inhibitor from Coprinus cinereus (Coprinaceae). Bioorg Med Chem 18:4879

    Article  CAS  Google Scholar 

  387. Yin X, Feng T, Liu JK (2012) Structures and cytotoxicities of three new sesquiterpenes from cultures of Armillaria sp. Nat Prod Bioprospect 2:245

    Article  CAS  Google Scholar 

  388. Nord CL, Menkis A, Vasaitis R, Broberg A (2013) Protoilludane sesquiterpenes from the wood decomposing fungus Granulobasidium vellereum (Ellis & Cragin) Jülich. Phytochemistry 90:128

    Article  CAS  Google Scholar 

  389. Nord CL, Menkis A, Lendel C, Vasaitis R, Broberg A (2014) Sesquiterpenes from the saprotrophic fungus Granulobasidium vellereum (Ellis & Cragin) Jülich. Phytochemistry 102:197

    Article  CAS  Google Scholar 

  390. Chen CC, Kuo YH, Cheng JJ, Sung PH, Ni CL, Chen CC, Shen CC (2015) Three new sesquiterpene aryl esters from the mycelium of Armillaria mellea. Molecules 20:9994

    Article  CAS  Google Scholar 

  391. Kobori H, Sekiya A, Suzuki T, Choi JH, Hirai H, Kawagishi H (2015) Bioactive sesquiterpene aryl esters from the culture broth of Armillaria sp. J Nat Prod 78:163

    Article  CAS  Google Scholar 

  392. Yang XY, Li ZH, Dong ZJ, Feng T, Liu JK (2015) Three new sesquiterpenoids from cultures of the basidiomycete Conocybe siliginea. J Asian Nat Prod Res 17:1

    Article  CAS  Google Scholar 

  393. Li Z, Wang Y, Jiang B, Li W, Zheng L, Yang X, Bao Y, Sun L, Huang Y, Li Y (2016) Structure, cytotoxic activity and mechanism of protoilludane sesquiterpene aryl esters from the mycelium of Armillaria mellea. J Ethnopharmacol 184:119

    Article  CAS  Google Scholar 

  394. Bohnert M, Nutzmann HW, Schroeckh V, Horn F, Dahse HM, Brakhage AA, Hoffmeister D (2014) Cytotoxic and antifungal activities of melleolide antibiotics follow dissimilar structure-activity relationships. Phytochemistry 105:101

    Article  CAS  Google Scholar 

  395. Misiek M, Hoffmeister D (2008) Processing sites involved in intron splicing of Armillaria natural product genes. Mycol Res 112:216

    Article  CAS  Google Scholar 

  396. Bohnert M, Scherer O, Wiechmann K, Konig S, Dahse HM, Hoffmeister D, Werz O (2014) Melleolides induce rapid cell death in human primary monocytes and cancer cells. Bioorg Med Chem 22:3856

    Article  CAS  Google Scholar 

  397. Lackner G, Bohnert M, Wick J, Hoffmeister D (2013) Assembly of melleolide antibiotics involves a polyketide synthase with cross-coupling activity. Chem Biol 20:1101

    Article  CAS  Google Scholar 

  398. Wick J, Heine D, Lackner G, Misiek M, Tauber J, Jagusch H, Hertweck C, Hoffmeister D (2016) A fivefold parallelized biosynthetic process secures chlorination of Armillaria mellea (honey mushroom) toxins. Appl Environ Microbiol 82:1196

    Article  CAS  Google Scholar 

  399. Mehta G, Sreenivas K (2001) Total synthesis of the novel tricyclic sesquiterpene sulcatine G. Chem Commun:1892

    Google Scholar 

  400. Mehta G, Sreenivas K (2002) Enantioselective total synthesis of the novel tricyclic sesquiterpene (–)-sulcatine G. Absolute configuration of the natural product. Tetrahedron Lett 43:3319

    Article  CAS  Google Scholar 

  401. Taber DF, Frankowski KJ (2005) Synthesis of (+)-sulcatine G. J Org Chem 70:6417

    Article  CAS  Google Scholar 

  402. Chang EL, Bolte B, Lan P, Willis AC, Banwell MG (2016) Chemoenzymatic total syntheses of the enantiomers of the protoilludanes 8-deoxydihydrotsugicoline and radudiol. J Org Chem 81:2078

    Article  CAS  Google Scholar 

  403. Schwartz BD, Matousova E, White R, Banwell MG, Willis AC (2013) A chemoenzymatic total synthesis of the protoilludane aryl ester (+)-armillarivin. Org Lett 15:1934

    Article  CAS  Google Scholar 

  404. Bohnert M, Miethbauer S, Dahse HM, Ziemen J, Nett M, Hoffmeister D (2011) In vitro cytotoxicity of melleolide antibiotics: structural and mechanistic aspects. Bioorg Med Chem Lett 21:2003

    Article  CAS  Google Scholar 

  405. Liu LY, Li ZH, Dong ZJ, Li XY, Su J, Li Y, Liu JK (2012) Two novel fomannosane-type sesquiterpenoids from the culture of the basidiomycete Agrocybe salicacola. Nat Prod Bioprospect 2:130

    Article  CAS  Google Scholar 

  406. Rasser F, Anke T, Sterner O (2002) Terpenoids from Bovista sp. 96042. Tetrahedron 58:7785

    Article  CAS  Google Scholar 

  407. del Val AG, Platas G, Arenal F, Orihuela JC, Garcia M, Hernandez P, Royo I, De Pedro N, Silver LL, Young K, Vicente MF, Pelaez F (2003) Novel illudins from Coprinopsis episcopalis (syn. Coprinus episcopalis), and the distribution of illudin-like compounds among filamentous fungi. Mycol Res 107:1201

    Article  CAS  Google Scholar 

  408. Reina M, Orihuela JC, González-Coloma A, de Inés C, de la Cruz M, del Val AG, Torno JR, Fraga BM (2004) Four illudane sesquiterpenes from Coprinopsis episcopalis. Phytochemistry 65:381

    Article  CAS  Google Scholar 

  409. Ma WZ, Huang YC, Lin LD, Zhu XF, Chen YZ, Xu HH, Wei XY (2004) Two new biologically active illudane sesquiterpenes from the mycelial cultures of Panaeolus redrugis. J Antibiot 57:721

    Article  CAS  Google Scholar 

  410. Zhu YC, Wang G, Yang XL, Luo DQ, Zhu QC, Peng T, Liu JK (2010) Agrocybone, a novel bis-sesquiterpene with a spirodienone structure from basidiomycete Agrocybe salicacola. Tetrahedron Lett 51:3443

    Article  CAS  Google Scholar 

  411. Liu LY, Zhang L, Feng T, Li ZH, Dong ZJ, Li XY, Su J, Li Y, Liu JK (2011) Unusual illudin-type sesquiterpenoids from cultures of Agrocybe salicacola. Nat Prod Bioprospect 1:87

    Article  CAS  Google Scholar 

  412. Wang G, Liu LY, Zhu YC, Liu JK (2011) Illudin T, a new sesquiterpenoid from basidiomycete Agrocybe salicacola. J Asian Nat Prod Res 13:430

    Article  CAS  Google Scholar 

  413. He JB, Tao J, Miao XS, Feng YP, Bu W, Dong ZJ, Li ZH, Feng T, Liu JK (2015) Two new illudin type sesquiterpenoids from cultures of Phellinus tuberculosus and Laetiporus sulphureus. J Asian Nat Prod Res 17:1054

    Article  CAS  Google Scholar 

  414. Nord C, Menkis A, Broberg A (2015) Cytotoxic illudane sesquiterpenes from the fungus Granulobasidium vellereum (Ellis & Cragin) Jülich. J Nat Prod 78:2559

    Article  CAS  Google Scholar 

  415. Kokubun T, Scott-Brown A, Kite GC, Simmonds MSJ (2016) Protoilludane, illudane, illudalane, and norilludane sesquiterpenoids from Granulobasidium vellereum. J Nat Prod 79:1698

    Article  CAS  Google Scholar 

  416. Suzuki S, Murayama T, Shiono Y (2005) Illudalane sesquiterpenoids, echinolactones A and B, from a mycelial culture of Echinodontium japonicum. Phytochemistry 66:2329

    Article  CAS  Google Scholar 

  417. Isaka M, Srisanoh U, Choowong W, Boonpratuang T (2011) Sterostreins A–E, new terpenoids from cultures of the basidiomycete Stereum ostrea BCC 22955. Org Lett 13:4886

    Article  CAS  Google Scholar 

  418. Tian MQ, Liu R, Li JF, Zhang KQ, Li GH (2016) Three new sesquiterpenes from the fungus Stereum sp. YMF1.1686. Phytochem Lett 15:186

    Article  CAS  Google Scholar 

  419. Li JF, Qin YK, Tian MQ, Zhang KQ, Li GH (2014) Two new sesquiterpenes from the fungus Stereum sp. NN048997. Phytochem Lett 10:32

    Article  CAS  Google Scholar 

  420. Becker U, Erkel G, Anke T, Sterner O (1997) Puraquinonic acid, a novel inducer of differentiation of human HL-60 promyelocytic leukemia cells from Mycena pura (Pers. ex Fr.) Nat Prod Lett 9:229

    Article  CAS  Google Scholar 

  421. Anchel M, Hervey A, Robbins WJ (1950) Antibiotic substances from Basidiomycetes. VII. Clitocybe illudens. Proc Natl Acad Sci U S A 36:300

    Article  CAS  Google Scholar 

  422. Lehmann VKB, Huang A, Ibanez-Calero S, Wilson GR, Rinehart KL (2003) Illudin S, the sole antiviral compound in mature fruiting bodies of Omphalotus illudens. J Nat Prod 66:1257

    Article  CAS  Google Scholar 

  423. McMorris TC (1999) Discovery and development of sesquiterpenoid derived hydroxymethylacylfulvene: a new anticancer drug. Bioorg Med Chem 7:881

    Article  CAS  Google Scholar 

  424. Tanasova M, Sturla SJ (2012) Chemistry and biology of acylfulvenes: sesquiterpene-derived antitumor agents. Chem Rev 112:3578

    Article  CAS  Google Scholar 

  425. McMorris TC, Chimmani R, Alisala K, Staake MD, Banda G, Kelner MJ (2010) Structure-activity studies of urea, carbamate, and sulfonamide derivatives of acylfulvene. J Med Chem 53:1109

    Article  CAS  Google Scholar 

  426. Staake MD, Kashinatham A, McMorris TC, Estes LA, Kelner MJ (2016) Hydroxyurea derivatives of irofulven with improved antitumor efficacy. Bioorg Med Chem Lett 26:1836

    Article  CAS  Google Scholar 

  427. Gong JC, Neels JF, Yu X, Kensler TW, Peterson LA, Sturla SJ (2006) Investigating the role of stereochemistry in the activity of anticancer acylfulvenes: synthesis, reductase-mediated bioactivation, and cellular toxicity. J Med Chem 49:2593

    Article  CAS  Google Scholar 

  428. McMorris TC, Staake MD, Kelner MJ (2004) Synthesis and biological activity of enantiomers of antitumor irofulven. J Org Chem 69:619

    Article  CAS  Google Scholar 

  429. Movassaghi M, Piizzi G, Siegel DS, Piersanti G (2006) Enantioselective total synthesis of (–)-acylfulvene and (–)-irofulven. Angew Chem Int Ed 45:5859

    Article  CAS  Google Scholar 

  430. Siegel DS, Piizzi G, Piersanti G, Movassaghi M (2009) Enantioselective total synthesis of (–)-acylfulvene and (–)-irofulven. J Org Chem 74:9292

    Article  CAS  Google Scholar 

  431. Nord CL, Menkis A, Broberg A (2014) Cytotoxic illudalane sesquiterpenes from the wood-decay fungus Granulobasidium vellereum (Ellis & Cragin) Jülich. Molecules 19:14195

    Article  CAS  Google Scholar 

  432. Nair MSR, Takeshita H, McMorris TC, Anchel M (1969) Metabolites of Clitocybe illudens. IV. Illudalic acid, a sesquiterpenoid, and illudinine, a sesquiterpenoid alkaloid. J Org Chem 34:240

    Article  CAS  Google Scholar 

  433. Yan YJ, Yang J, Yu ZY, Yu MM, Ma YT, Wang L, Su C, Luo JY, Horsman GP, Huang SX (2016) Non-enzymatic pyridine ring formation in the biosynthesis of the rubrolone tropolone alkaloids. Nat Commun 7:13083

    Article  CAS  Google Scholar 

  434. Clive DLJ, Sannigrahi M, Hisaindee S (2001) Synthesis of (±)-puraquinonic acid: an inducer of cell differentiation. J Org Chem 66:954

    Article  CAS  Google Scholar 

  435. Clive DLJ, Yu ML (2002) Synthesis of (+)-puraquinonic acid. Chem Commun:2380

    Google Scholar 

  436. Clive DLJ, Yu ML, Sannigrahi M (2004) Synthesis of optically pure (+)-puraquinonic acid and assignment of absolute configuration to natural (–)-puraquinonic acid. Use of radical cyclization for asymmetric generation of a quaternary center. J Org Chem 69:4116

    Article  CAS  Google Scholar 

  437. Hisaindee S, Clive DLJ (2001) A synthesis of puraquinonic acid. Tetrahedron Lett 42:2253

    Article  CAS  Google Scholar 

  438. Kraus GA, Choudhury PK (2002) Synthesis of puraquinonic acid ethyl ester and deliquinone via a common intermediate. J Org Chem 67:5857

    Article  CAS  Google Scholar 

  439. Tiong EA, Rivalti D, Williams BM, Gleason JL (2013) A concise total synthesis of (R)-puraquinonic acid. Angew Chem Int Ed 52:3442

    Article  CAS  Google Scholar 

  440. Suresh M, Kumar N, Veeraraghavaiah G, Hazra S, Singh RB (2016) Total synthesis of coprinol. J Nat Prod 79:2740

    Article  CAS  Google Scholar 

  441. Daniewski WM, Gumuika M, Skibicki P, Anczewski W, Jacobsson U, Norin T (1994) New constituents of Lactarius vellereus. Nat Prod Lett 5:123

    Article  CAS  Google Scholar 

  442. Yaoita Y, Machida K, Kikuchi M (1999) Structures of new marasmane sesquiterpenoids from Lactarius piperatus (Scop. ex Fr.) SF Gray. Chem Pharm Bull 47:894

    Article  CAS  Google Scholar 

  443. Wang XN, Wang F, JC D, Ge HM, Tan RX, Liu JK (2005) A new marasmane sesquiterpene from the basidiomycete Russula foetens. Z Naturforsch B 60:1065

    CAS  Google Scholar 

  444. Wang XN, Shen JH, MC D, Liu JK (2006) Marasmane sesquiterpenes isolated from Russula foetens. J Antibiot 59:669

    Article  CAS  Google Scholar 

  445. Shao HJ, Wang CJ, Dai Y, Wang F, Yang WQ, Liu JK (2007) Pubescenone, a new marasmane sesquiterpenoid from the mushroom Lactarius pubescens. Heterocycles 71:1135

    Article  CAS  Google Scholar 

  446. Kim KH, Noh HJ, Choi SU, Park KM, Seok SJ, Lee KR (2010) Russulfoen, a new cytotoxic marasmane sesquiterpene from Russula foetens. J Antibiot 63:575

    Article  CAS  Google Scholar 

  447. Pang ZJ, Bocchio F, Sterner O (1992) The isolation of a new lactarane furan from injured fruit bodies of Lentinellus cochleatus. Nat Prod Lett 1:65

    Article  CAS  Google Scholar 

  448. Kobata K, Kano S, Shibata H (1995) New lactarane sesquiterpenoid from the fungus Russula emetica. Biosci Biotechnol Biochem 59:316

    Article  CAS  Google Scholar 

  449. Luo DQ, Wang F, Bian XY, Liu JK (2005) Rufuslactone, a new antifungal sesquiterpene from the fruiting bodies of the basidiomycete Lactarius rufus. J Antibiot 58:456

    Article  CAS  Google Scholar 

  450. Kamo T, Matsue M, Kashiwabara M, Hirota M (2006) 1,2-Dehydrolactarolide A, a new plant growth regulatory lactarane sesquiterpene from Lactarius vellereus. Biosci Biotechnol Biochem 70:2307

    Article  CAS  Google Scholar 

  451. Luo DQ, Zhao LY, Shi YL, Tang HL, Li YY, Yang LM, Zheng YT, Zhu HJ, Liu JK (2009) Velleratretraol, an unusual highly functionalized lactarane sesquiterpene from Lactarius vellereus. J Antibiot 62:129

    Article  CAS  Google Scholar 

  452. Kim KH, Noh HJ, Choi SU, Park KM, Seok SJ, Lee KR (2010) Lactarane sesquiterpenoids from Lactarius subvellereus and their cytotoxicity. Bioorg Med Chem Lett 20:5385

    Article  CAS  Google Scholar 

  453. Yaoita Y, Hirao M, Kikuchi M, Machida K (2012) Three new lactarane sesquiterpenoids from the mushroom Russula sanguinea. Nat Prod Commun 7:1133

    CAS  Google Scholar 

  454. Malagon O, Porta A, Clericuzio M, Gilardoni G, Gozzini D, Vidari G (2014) Structures and biological significance of lactarane sesquiterpenes from the European mushroom Russula nobilis. Phytochemistry 107:126

    Article  CAS  Google Scholar 

  455. Hiramatsu F, Murayama T, Koseki T, Shiono Y (2008) A new secolactarane-type sesquiterpene from Strobilurus tephanocystis. Nat Prod Res 22:1007

    Article  CAS  Google Scholar 

  456. Froborg J, Magnusson G (1978) On the biogenetic interrelationship between the marsmane- and vellerane sesquiterpene skeletons. Tetrahedron 34:2027

    Article  CAS  Google Scholar 

  457. Gilardoni G, Malagon O, Tosi S, Clericuzio M, Vidari G (2014) Lactarane sesquiterpenes from the European mushrooms Lactarius aurantiacus, L. subdulcis, and Russula sanguinaria. Nat Prod Commun 9:319

    CAS  Google Scholar 

  458. Schuffler A, Wollinsky B, Anke T, Liermann JC, Opatz T (2012) Isolactarane and sterpurane sesquiterpenoids from the basidiomycete Phlebia uda. J Nat Prod 75:1405

    Article  CAS  Google Scholar 

  459. Erkel G, Anke T, Velten R, Gimenez A, Steglich W (1994) Hyphodontal, a new antifungal inhibitor of reverse transcriptases from Hyphodontia sp. (Corticiaceae, Basidiomycetes). Z Naturforsch C 49:561

    CAS  Google Scholar 

  460. Opatz T, Kolshorn H, Anke H (2008) Sterelactones: new isolactarane type sesquiterpenoids with antifungal activity from Stereum sp. IBWF 01060. J Antibiot 61:563

    Article  CAS  Google Scholar 

  461. Ayer WA, Cruz ER (1993) The tremulanes, a new group of sesquiterpenes from the aspen rotting fungus Phellinus tremulae. J Org Chem 58:7529

    Article  CAS  Google Scholar 

  462. Yin RH, Zhao ZZ, Chen HP, Yin X, Ji X, Dong ZJ, Li ZH, Feng T, Liu JK (2014) Tremulane sesquiterpenes from cultures of the fungus Phellinus igniarius and their vascular-relaxing activities. Phytochem Lett 10:300

    Article  CAS  Google Scholar 

  463. Liu DZ, Wang F, Liu JK (2007) Sesquiterpenes from cultures of the basidiomycete Conocybe siliginea. J Nat Prod 70:1503

    Article  CAS  Google Scholar 

  464. Zhou ZY, Tang JG, Wang F, Dong ZJ, Liu JK (2008) Sesquiterpenes and aliphatic diketones from cultures of the basidiomycete Conocybe siliginea. J Nat Prod 71:1423

    Article  CAS  Google Scholar 

  465. Wu XL, Lin S, Zhu CG, Yue ZG, Yu Y, Zhao F, Liu B, Dai JG, Shi JG (2010) Homo- and heptanor-sterols and tremulane sesquiterpenes from cultures of Phellinus igniarius. J Nat Prod 73:1294

    Article  CAS  Google Scholar 

  466. Yang XY, Feng T, Yin X, Li ZH, Zhang L, Liu JK (2012) Seven new sesquiterpenes from cultures of the basidiomycete Conocybe siliginea. Chin J Chem 30:1231

    Article  CAS  Google Scholar 

  467. Yang XY, Feng T, Ding JH, Yin X, Guo H, Li ZH, Liu JK (2013) Five new 5,6-seco-tremulane sesquiterpenoids from the basidiomycete Conocybe siliginea. Nat Prod Bioprospect 3:48

    Article  CAS  Google Scholar 

  468. Ding JH, Feng T, Cui BK, Wei K, Li ZH, Liu JK (2013) Novel sesquiterpenoids from cultures of the basidiomycete Irpex lacteus. Tetrahedron Lett 54:2651

    Article  CAS  Google Scholar 

  469. Isaka M, Palasarn S, Supothina S, Srichomthong K, Choeyklin R (2016) seco-Tremulanes from cultures of the basidiomycete Flavodon flavus BCC 17421. Helv Chim Acta 99:232

    Article  CAS  Google Scholar 

  470. Anke T, Watson WH, Giannetti BM, Steglich W (1981) The alliacols A and B from Marasmius alliaceus (Jacq. ex Fr.) Fr. J Antibiot 34:1271

    Article  CAS  Google Scholar 

  471. Ayer WA, Shan RD, Trifonov LS, Hutchison LJ (1998) Sesquiterpenes from the nematicidal fungus Clitocybula oculus. Phytochemistry 49:589

    Article  CAS  Google Scholar 

  472. Tao QQ, Ma K, Bao L, Wang K, Han JJ, Zhang JX, Huang CY, Liu HW (2016) New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B. Fitoterapia 111:29

    Article  CAS  Google Scholar 

  473. Jiang MY, Yang XL, Fang LZ, Dong ZJ, Liu JK (2008) Purpuracolide: a new alliacane sesquiterpene from the basidiomycete Gomphus purpuraceus. Z Naturforsch B 63:1012

    CAS  Google Scholar 

  474. Qin XD, Shao HJ, Dong ZJ, Liu JK (2008) Six new induced sesquiterpenes from the cultures of ascomycete Daldinia concentrica. J Antibiot 61:556

    Article  CAS  Google Scholar 

  475. Feng T, Li ZH, Dong ZJ, Su J, Li Y, Liu JK (2011) Non-isoprenoid botryane sesquiterpenoids from basidiomycete Boletus edulis and their cytotoxic activity. Nat Prod Bioprospect 1:29

    Article  CAS  Google Scholar 

  476. Liu DZ, Jia RR, Wang F, Liu JK (2008) A new spiroaxane sesquiterpene from cultures of the basidiomycete Pholiota adiposa. Z Naturforsch B 63:111

    CAS  Google Scholar 

  477. Wang SR, Zhang L, Chen HP, Li ZH, Dong ZJ, Wei K, Liu JK (2015) Four new spiroaxane sesquiterpenes and one new rosenonolactone derivative from cultures of basidiomycete Trametes versicolor. Fitoterapia 105:127

    Article  CAS  Google Scholar 

  478. Tao QQ, Ma K, Yang YL, Wang K, Chen BS, Huang Y, Han JJ, Bao L, Liu XB, Yang ZL, Yin WB, Liu HW (2016) Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. J Org Chem 81:9867

    Article  CAS  Google Scholar 

  479. Fogedal M, Norberg T (1986) Deoxycollybolidol, a sesquiterpene from Collybia peronata. Phytochemistry 25:2661

    Article  CAS  Google Scholar 

  480. Dörfelt H, Schlegel B, Gräfe U (2000) Dictyopanines A, B and C, new bicyclic sesquiterpene esters from Dicotyopanus sp. HKI 0181. J Antibiot 53:839

    Article  Google Scholar 

  481. Eilbert F, Engler-Lohr M, Anke H, Sterner O (2000) Bioactive sesquiterpenes from the basidiomycete Resupinatus leightonii. J Nat Prod 63:1286

    Article  CAS  Google Scholar 

  482. Yaoita Y, Ono H, Kikuchi M (2003) A new norsesquiterpenoid from Russula delica Fr. Chem Pharm Bull 51:1003

    Article  CAS  Google Scholar 

  483. Li GH, Zhang KQ (2005) A novel sesquiterpene isolated from Stereum sp. 8954. Chin Chem Lett 16:1615

    CAS  Google Scholar 

  484. Li GH, Liu FF, Shen L, Zhu HJ, Zhang KQ (2011) Stereumins H–J, stereumane-type sesquiterpenes from the fungus Stereum sp. J Nat Prod 74:296

    Article  CAS  Google Scholar 

  485. Liu DZ, Wang F, Jia RR, Liu JK (2008) A novel sesquiterpene from the basidiomycete Boletus calopus. Z Naturforsch B 63:114

    CAS  Google Scholar 

  486. Luo DQ, Liang SJ, Shi YL, Tang HL (2009) Mitissimolone, a new sesquiterpene with a novel carbon skeleton from the basidiomycete Lactarius mitissimus. Helv Chim Acta 92:2082

    Article  CAS  Google Scholar 

  487. Liu DZ, Dong ZJ, Wang F, Liu JK (2010) Two novel norsesquiterpene peroxides from basidiomycete Steccherinum ochraceum. Tetrahedron Lett 51:3152

    Article  CAS  Google Scholar 

  488. Liu DZ, Luo MH (2010) Two new chamigrane metabolites from fermentation broth of Steccherinum ochraceum. Fitoterapia 81:1205

    Article  CAS  Google Scholar 

  489. Ding JH, Feng T, Li ZH, Yang XY, Guo H, Yin X, Wang GQ, Liu JK (2012) Trefolane A, a sesquiterpenoid with a new skeleton from cultures of the basidiomycete Tremella foliacea. Org Lett 14:4976

    Article  CAS  Google Scholar 

  490. Yang XY, Feng T, Li ZH, Sheng Y, Yin X, Leng Y, Liu JK (2012) Conosilane A, an unprecedented sesquiterpene from the cultures of basidiomycete Conocybe siliginea. Org Lett 14:5382

    Article  CAS  Google Scholar 

  491. Huang SC, Kuo PC, Hwang TL, Chan YY, Chen CH, TS W (2013) Three novel sesquiterpenes from the mycelium of Phellinus linteus. Tetrahedron Lett 54:3332

    Article  CAS  Google Scholar 

  492. Sun YS, Zhao Z, Feng QS, Xu QQ, Lu LX, Liu JK, Zhang L, Wu B, Li YQ (2013) Unusual spirodecane sesquiterpenes and a fumagillol analogue from Cordyceps ophioglossoides. Helv Chim Acta 96:76

    Article  CAS  Google Scholar 

  493. Fan QY, Dong ZJ, Li ZH, Yin X, Yang XY, Feng T, Wei K, Liu JK, Zhao BH (2014) Two new ylangene-type sesquiterpenoids from cultures of the fungus Postia sp. J Asian Nat Prod Res 16:254

    Article  CAS  Google Scholar 

  494. Hu DB, Zhang S, He JB, Dong ZJ, Li ZH, Feng T, Liu JK (2015) Brasilane sesquiterpenoids and alkane derivatives from cultures of the basidiomycete Coltricia sideroides. Fitoterapia 104:50

    Article  CAS  Google Scholar 

  495. Pham TB, Descoutures D, Nguyen HD, Nguyen PDN, Nguyen TD (2015) A new cytotoxic gymnomitrane sesquiterpene from Ganoderma lucidum fruiting bodies. Nat Prod Commun 10:1911

    Google Scholar 

  496. Otto A, Porzel A, Schmidt J, Wessjohann L, Arnold N (2014) Penarines A-F, (nor-)sesquiterpene carboxylic acids from Hygrophorus penarius (Basidiomycetes). Phytochemistry 108:229

    Article  CAS  Google Scholar 

  497. Surup F, Kuhnert E, Liscinskij E, Stadler M (2015) Silphiperfolene-type terpenoids and other metabolites from cultures of the tropical Ascomycete Hypoxylon rickii (Xylariaceae). Nat Prod Bioprospect 5:167

    Article  CAS  Google Scholar 

  498. Sun YS, Lv LX, Zhao Z, He X, You L, Liu JK, Li YQ (2014) Cordycepol C induces caspase-independent apoptosis in human hepatocellular carcinoma HepG2 cells. Biol Pharm Bull 37:608

    Article  CAS  Google Scholar 

  499. Ma BJ, Shen JW, Yu HY, Ruan Y, Wu TT, Zhao X (2010) Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus. Mycology 1:92

    Article  CAS  Google Scholar 

  500. Shen JW, Ruan Y, Ma BJ (2009) Diterpenoids of macromycetes. J Basic Microbiol 49:242

    Article  CAS  Google Scholar 

  501. Kenmoku H, Tanaka K, Okada K, Kato N, Sassa T (2004) Erinacol (cyatha-3,12-dien-14β-ol) and 11-O-acetylcyathin A3, new cyathane metabolites from an erinacine Q-producing Hericium erinaceum. Biosci Biotechnol Biochem 68:1786

    Article  CAS  Google Scholar 

  502. Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, Ishiguro Y, Furukawa S (1994) Erinacine A, erinacine B and erinacine C, strong stimulators of nerve growth-factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett 35:1569

    Article  CAS  Google Scholar 

  503. Shimbo M, Kawagishi H, Yokogoshi H (2005) Erinacine A increases catecholamine and nerve growth factor content in the central nervous system of rats. Nutr Res 25:617

    Article  CAS  Google Scholar 

  504. Shiono Y, Hiramatsu F, Murayama T, Koseki T, Funakoshi T (2008) Two cyathane-type diterpenoids from the liquid culture of Strobilurus tenacellus. Chem Biodivers 5:1811

    Article  CAS  Google Scholar 

  505. Fang ST, Feng T, Zhang L, Dong ZJ, Li ZH, Liu JK (2011) Cyathane diterpenoids from fruiting bodies of Phellodon niger. Nat Prod Bioprospect 1:37

    Article  CAS  Google Scholar 

  506. Liu L, Shi XW, Zong SC, Tang JJ, Gao JM (2012) Scabronine M, a novel inhibitor of NGF-induced neurite outgrowth from PC12 cells from the fungus Sarcodon scabrosus. Bioorg Med Chem Lett 22:2401

    Article  CAS  Google Scholar 

  507. Ma BJ, TT W, Ruan Y, Shen JW, Zhou H, HY Y, Zhao X (2010) Antibacterial and antifungal activity of scabronine G and H in vitro. Mycology 1:200

    Article  CAS  Google Scholar 

  508. Shi XW, Liu L, Gao JM, Zhang AL (2011) Cyathane diterpenes from Chinese mushroom Sarcodon scabrosus and their neurite outgrowth-promoting activity. Eur J Med Chem 46:3112

    Article  CAS  Google Scholar 

  509. Shi XW, Zhang AL, Pescitelli G, Gao JM (2012) Secoscabronine M, a novel diterpenoid from the Chinese bitter mushroom Sarcodon scabrosus. Chirality 24:386

    Article  CAS  Google Scholar 

  510. Marcotullio MC, Rosati O, Maltese F, Messina F (2013) Cyrneine E, a new cyathane diterpene from Sarcodon cyrneus. Rec Nat Prod 7:239

    CAS  Google Scholar 

  511. Han JJ, Chen YH, Bao L, Yang XL, Liu DL, Li SJ, Zhao F, Liu HW (2013) Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia 84:22

    Article  CAS  Google Scholar 

  512. Han JJ, Zhang L, JK X, Bao L, Zhao F, Chen YH, Zhang WK, Liu HW (2015) Three new cyathane diterpenoids from the medicinal fungus Cyathus africanus. J Asian Nat Prod Res 17:541

    Article  CAS  Google Scholar 

  513. He LW, Han JJ, Li BW, Huang L, Ma K, Chen Q, Liu XZ, Bao L, Liu HW (2016) Identification of a new cyathane diterpene that induces mitochondrial and autophagy-dependent apoptosis and shows a potent in vivo anti-colorectal cancer activity. Eur J Med Chem 111:183

    Article  CAS  Google Scholar 

  514. Xu ZY, Yan S, Bi KS, Han JJ, Chen YH, Wu ZA, Chen YH, Liu HW (2013) Isolation and identification of a new anti-inflammatory cyathane diterpenoid from the medicinal fungus Cyathus hookeri Berk. Fitoterapia 86:159

    Article  CAS  Google Scholar 

  515. Wang BT, Han JJ, Xu W, Chen YH, Liu HW (2014) Production of bioactive cyathane diterpenes by a bird's nest fungus Cyathus gansuensis growing on cooked rice. Food Chem 152:169

    Article  CAS  Google Scholar 

  516. Bai R, Zhang CC, Yin X, Wei J, Gao JM (2015) Striatoids A–F, cyathane diterpenoids with neurotrophic activity from cultures of the fungus Cyathus striatus. J Nat Prod 78:783

    Article  CAS  Google Scholar 

  517. Zhang Z, Liu RN, Tang QJ, Zhang JS, Yang Y, Shang XD (2015) A new diterpene from the fungal mycelia of Hericium erinaceus. Phytochem Lett 11:151

    Article  CAS  Google Scholar 

  518. Mudalungu CM, Richter C, Wittstein K, Abdalla MA, Matasyoh JC, Stadler M, Süssmuth RD (2016) Laxitextines A and B, cyathane xylosides from the tropical fungus Laxitextum incrustatum. J Nat Prod 79:894

    Article  CAS  Google Scholar 

  519. Kuo HC, Lu CC, Shen CH, Tung SY, Hsieh MC, Lee KC, Lee LY, Chen CC, Teng CC, Huang WS, Chen TC, Lee KF (2016) Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade. J Transl Med 14:78

    Article  CAS  Google Scholar 

  520. Lee KC, Kuo HC, Shen CH, Lu CC, Huang WS, Hsieh MC, Huang CY, Kuo Y, Hsieh YY, Teng CC, Lee LY, Tung SY (2016) A proteomics approach to identifying novel protein targets involved in erinacine A-mediated inhibition of colorectal cancer cells’ aggressiveness. J Cell Mol Med 21:588

    Google Scholar 

  521. Lee KF, Chen JH, Teng CC, Shen CH, Hsieh MC, Lu CC, Lee KC, Lee LY, Chen WP, Chen CC, Huang WS, Kuo HC (2014) Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine. Int J Mol Sci 15:15073

    Article  CAS  Google Scholar 

  522. Li IC, Chen YL, Lee LY, Chen WP, Tsai YT, Chen CC, Chen CS (2014) Evaluation of the toxicological safety of erinacine A-enriched Hericium erinaceus in a 28-day oral feeding study in Sprague-Dawley rats. Food Chem Toxicol 70:61

    Article  CAS  Google Scholar 

  523. Lu CC, Huang WS, Lee KF, Lee KC, Hsieh MC, Huang CY, Lee LY, Lee BO, Teng CC, Shen CH, Tung SY, Kuo HC (2016) Inhibitory effect of erinacine A on the growth of DLD-1 colorectal cancer cells is induced by generation of reactive oxygen species and activation of p70s6K and p21. J Funct Foods 21:474

    Article  CAS  Google Scholar 

  524. Tzeng TT, Chen CC, Lee LY, Chen WP, Lu CK, Shen CC, Huang FCY, Chen CC, Shiao YJ (2016) Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer’s disease-related pathologies in APPswe/PS1dE9 transgenic mice. J Biomed Sci 23:49

    Article  Google Scholar 

  525. Kim K, Cha JK (2009) Total synthesis of cyathin A3 and cyathin B2. Angew Chem Int Ed 48:5334

    Article  CAS  Google Scholar 

  526. Ward DE, Shen JH (2007) Enantioselective total synthesis of cyathin A3. Org Lett 9:2843

    Article  CAS  Google Scholar 

  527. Kobayakawa Y, Nakada M (2013) Total syntheses of (–)-scabronines G and A, and (–)-episcabronine A. Angew Chem Int Ed 52:7569

    Article  CAS  Google Scholar 

  528. Waters SP, Tian Y, Li YM, Danishefsky SJ (2005) Total synthesis of (–)-scabronine G, an inducer of neurotrophic factor production. J Am Chem Soc 127:13514

    Article  CAS  Google Scholar 

  529. Watanabe H, Nakada M (2008) Biomimetic total synthesis of (–)-erinacine E. J Am Chem Soc 130:1150

    Article  CAS  Google Scholar 

  530. Kobayakawa Y, Nakada M (2014) Enantioselective total synthesis of (–)-cyathin B2. J Antibiot 67:483

    Article  CAS  Google Scholar 

  531. Nakada M (2014) Enantioselective total syntheses of cyathane diterpenoids. Chem Rec 14:641

    Article  CAS  Google Scholar 

  532. Liu R, Liu JK (2009) A new neodolastane diterpene from cultures of the basidiomycete Trametes corrugata. Heterocycles 78:2565

    Article  CAS  Google Scholar 

  533. Ju YM, Wang GJ, Chen CY, Tsau YJ, Chou CH, Lee TH (2010) Chemical constituents from fermented broth and mycelium of the basidiomycete Lacrymaria velutina. Bot Stud 51:311

    CAS  Google Scholar 

  534. Liu YZ, Lu CH, Shen YM (2014) Guanacastane-type diterpenoids from Coprinus plicatilis. Phytochem Lett 7:161

    Article  CAS  Google Scholar 

  535. Liu YZ, Li YY, Ou YX, Xiao SY, Lu CH, Zheng ZH, Shen YM (2012) Guanacastane-type diterpenoids with cytotoxic activity from Coprinus plicatilis. Bioorg Med Chem Lett 22:5059

    Article  CAS  Google Scholar 

  536. Yin X, Feng T, Li ZH, Leng Y, Liu JK (2014) Five new guanacastane-type diterpenes from cultures of the fungus Psathyrella candolleana. Nat Prod Bioprospect 4:149

    Article  CAS  Google Scholar 

  537. Brummond KM, Gao D (2003) Unique strategy for the assembly of the carbon skeleton of guanacastepene A using an allenic Pauson-Khand-type reaction. Org Lett 5:3491

    Article  CAS  Google Scholar 

  538. Gampe CM, Carreira EM (2011) Total syntheses of guanacastepenes N and O. Angew Chem Int Ed 50:2962

    Article  CAS  Google Scholar 

  539. Iimura S, Overman LE, Paulini R, Zakarian A (2006) Enantioselective total synthesis of guanacastepene N using an uncommon 7-endo Heck cyclization as a pivotal step. J Am Chem Soc 128:13095

    Article  CAS  Google Scholar 

  540. Miller AK, Hughes CC, Kennedy-Smith JJ, Gradl SN, Trauner D (2006) Total synthesis of (–)-heptemerone B and (–)-guanacastepene E. J Am Chem Soc 128:17057

    Article  CAS  Google Scholar 

  541. Shiono Y, Motoki S, Koseki T, Murayama T, Tojima M, Kimura K (2009) Isopimarane diterpene glycosides, apoptosis inducers, obtained from fruiting bodies of the ascomycete Xylaria polymorpha. Phytochemistry 70:935

    Article  CAS  Google Scholar 

  542. Shiono Y, Matsui N, Imaizumi T, Koseki T, Murayama T, Kwon E, Abe T, Kimura KI (2013) An unusual spirocyclic isopimarane diterpenoid and other isopimarane diterpenoids from fruiting bodies of Xylaria polymorpha. Phytochem Lett 6:439

    Article  CAS  Google Scholar 

  543. Isaka M, Yangchum A, Auncharoen P, Srichomthong K, Srikitikulchai P (2011) Ring B aromatic norpimarane glucoside from a Xylaria sp. J Nat Prod 74:300

    Article  CAS  Google Scholar 

  544. Xu PP, You HC, Hu ZY, Li YY, Shen YM (2013) Two new pimarane-type diterpenes from the metabolites of Xylaria sp. 290. Chin J Org Chem 33:2618

    Article  CAS  Google Scholar 

  545. Schneider G, Anke H, Sterner O (1995) Xylarin, an antifungal Xylaria metabolite with an unusual tricyclic uronic acid moiety. Nat Prod Lett 7:309

    Article  CAS  Google Scholar 

  546. Chang YC, Lu CK, Chiang YR, Wang GJ, Ju YM, Kuo YH, Lee TH (2014) Diterpene glycosides and polyketides from Xylotumulus gibbisporus. J Nat Prod 77:751

    Article  CAS  Google Scholar 

  547. Kavanagh F, Hervey A, Robbins WJ (1951) Antibiotic substances from Basidiomycetes VIII. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc Natl Acad Sci U S A 37:570

    Article  CAS  Google Scholar 

  548. Novak R (2011) Are pleuromutilin antibiotics finally fit for human use? Ann N Y Acad Sci 1241:71

    Article  CAS  Google Scholar 

  549. Wang XY, Ling Y, Wang H, Yu JH, Tang JM, Zheng H, Zhao X, Wang DG, Chen GT, Qiu WQ, Tao JH (2012) Novel pleuromutilin derivatives as antibacterial agents: synthesis, biological evaluation and molecular docking studies. Bioorg Med Chem Lett 22:6166

    Article  CAS  Google Scholar 

  550. Fu LQ, Ling CY, Guo XS, He HL, Yang YS (2012) Synthesis and antibacterial activity of pleuromutilin derivatives with novel C(14) side chain. Chin Chem Lett 23:9

    Article  CAS  Google Scholar 

  551. Ling CY, Fu LQ, Gao S, Chu WJ, Wang H, Huang YQ, Chen XY, Yang YS (2014) Design, synthesis, and structure-activity relationship studies of novel thioether pleuromutilin derivatives as potent antibacterial agents. J Med Chem 57:4772

    Article  CAS  Google Scholar 

  552. Lotesta SD, Liu JJ, Yates EV, Krieger I, Sacchettini JC, Freundlich JS, Sorensen EJ (2011) Expanding the pleuromutilin class of antibiotics by de novo chemical synthesis. Chem Sci 2:1258

    Article  CAS  Google Scholar 

  553. Bailey AM, Alberti F, Kilaru S, Collins CM, De Mattos-Shipley K, Hartley AJ, Hayes P, Griffin A, Lazarus CM, Cox RJ, Willis CL, O’Dwyer K, Spence DW, Foster GD (2016) Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Sci Rep 6:25202

    Article  CAS  Google Scholar 

  554. Knauseder F, Brandl E (1976) Pleuromutilins – fermentation, structure and biosynthesis. J Antibiot 29:125

    Article  CAS  Google Scholar 

  555. Boeck LD, Reynolds PA, Wetzel RW (1981) Regulation of the A40104 fermentation-production of A40104A, a pleuromutilin glycoside antibiotic. In: Vezina C, Singh K (eds) Fermentation Products. Pergamon, Willowdale, Ont, Canada, p 187

    Chapter  Google Scholar 

  556. Wang Y, Wang SJ, Mo SY, Li SH, Yang YC, Shi JG (2006) An abietane diterpene and a sterol from fungus Phellinus igniarius. Chin Chem Lett 17:481

    CAS  Google Scholar 

  557. Jang HJ, Yang KS (2011) Inhibition of nitric oxide production in RAW 264.7 macrophages by diterpenoids from Phellinus pini. Arch Pharm Res 34:913

    Article  CAS  Google Scholar 

  558. Wen CN, Hu DB, Bai X, Wang F, Li ZH, Feng T, Liu JK (2016) Chemical constituents from fruiting bodies of basidiomycete Perenniporia subacida. Fitoterapia 109:179

    Article  CAS  Google Scholar 

  559. Anke T, Heim J, Knoch F, Mocek U, Steffan B, Steglich W (1985) Crinipellins, the first natural products with a tetraquinane skeleton. Angew Chem Int Ed 24:709

    Article  Google Scholar 

  560. Kupka J, Anke T, Oberwinkler F, Schramm G, Steglich W (1979) Crinipellin, a new antibiotic from the basidiomycetous fungus Crinipellis stipitaria (Fr.) Pat. J Antibiot 32:130

    Article  CAS  Google Scholar 

  561. Li YY, Shen YM (2010) Four novel diterpenoids from Crinipellis sp. 113. Helv Chim Acta 93:2151

    Article  CAS  Google Scholar 

  562. Rohr M, Oleinikov K, Jung M, Sandjo LP, Opatz T, Erkel G (2017) Anti-inflammatory tetraquinane diterpenoids from a Crinipellis species. Bioorg Med Chem 25:514

    Article  CAS  Google Scholar 

  563. Kang T, Song SB, Kim WY, Kim BG, Lee HY (2014) Total synthesis of (–)-crinipellin A. J Am Chem Soc 136:10274

    Article  CAS  Google Scholar 

  564. Schwartz CE, Curran DP (1990) New tandem radical cyclizations directed toward the synthesis of crinipellin A. J Am Chem Soc 112:9272

    Article  CAS  Google Scholar 

  565. Zhou ZY, Liu R, Jiang MY, Zhang L, Niu Y, Zhu YC, Dong ZJ, Liu JK (2009) Two new cleistanthane diterpenes and a new isocoumarin from cultures of the basidiomycete Albatrellus confluens. Chem Pharm Bull 57:975

    Article  CAS  Google Scholar 

  566. Wang Y, Zhang L, Wang F, Li ZH, Dong ZJ, Liu JK (2015) New diterpenes from cultures of the fungus Engleromyces goetzii and their CETP inhibitory activity. Nat Prod Bioprospect 5:69

    Article  CAS  Google Scholar 

  567. Lee IS, Kim KC, Yoo ID, Ha BJ (2015) Inhibition of human neutrophil elastase by labdane diterpenes from the fruiting bodies of Ramaria formosa. Biosci Biotechnol Biochem 79:1921

    Article  CAS  Google Scholar 

  568. Anke H, Casser I, Steglich W, Pommer EH (1987) Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens. J Antibiot 40:443

    Article  CAS  Google Scholar 

  569. Zhang L, Li ZH, Dong ZJ, Yan L, Liu JK (2015) A viscidane diterpene and polyacetylenes from cultures of Hypsizygus marmoreus. Nat Prod Bioprospect 5:99

    Article  CAS  Google Scholar 

  570. Wang SJ, Li YX, Bao L, Han JJ, Yang XJ, Li HR, Wang YQ, Li SJ, Liu HW (2012) Eryngiolide A, a cytotoxic macrocyclic diterpenoid with an unusual cyclododecane core skeleton produced by the edible mushroom Pleurotus eryngii. Org Lett 14:3672

    Article  CAS  Google Scholar 

  571. Arnone A, Bava A, Fronza G, Nasini G, Ragg E (2005) Concavine, an unusual diterpenic alkaloid produced by the fungus Clitocybe concava. Tetrahedron Lett 46:8037

    Article  CAS  Google Scholar 

  572. Tsukamoto S, Macabalang AD, Nakatani K, Obara Y, Nakahata N, Ohta T (2003) Tricholomalides A–C, new neurotrophic diterpenes from the mushroom Tricholoma sp. J Nat Prod 66:1578

    Article  CAS  Google Scholar 

  573. Wang Z, Min SJ, Danishefsky SJ (2009) Total synthesis and structural revision of (±)-tricholomalides A and B. J Am Chem Soc 131:10848

    Article  CAS  Google Scholar 

  574. Rios JL, Andujar I, Recio MC, Giner RM (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75:2016

    Article  CAS  Google Scholar 

  575. Richter C, Wittstein K, Kirk PM, Stadler M (2015) An assessment of the taxonomy and chemotaxonomy of Ganoderma. Fungal Divers 71:1

    Article  Google Scholar 

  576. Baby S, Johnson AJ, Govindan B (2015) Secondary metabolites from Ganoderma. Phytochemistry 114:66

    Article  CAS  Google Scholar 

  577. Koyama K, Imaizumi T, Akiba M, Kinoshita K, Takahashi L, Suzuki A, Yano S, Horie S, Watanabe K, Naoi Y (1997) Antinociceptive components of Ganoderma lucidum. Planta Med 63:224

    Article  CAS  Google Scholar 

  578. Kubota T, Asaka Y, Miura I, Mori H (1982) Structures of ganoderic acid A and acid B, two new lanostane type bitter triterpenes from Ganoderma lucidum (Fr.) Karst. Helv Chim Acta 65:611

    Article  CAS  Google Scholar 

  579. Lee S, Park S, Oh JW, Yang CH (1998) Natural inhibitors for protein prenyltransferase. Planta Med 64:303

    Article  CAS  Google Scholar 

  580. Kohda H, Tokumoto W, Sakamoto K, Fujii M, Hirai Y, Yamasaki K, Komoda Y, Nakamura H, Ishihara S, Uchida M (1985) The biologically active constituents of Ganoderma lucidum (Fr.) Karst. Histamine release-inhibitory triterpenes. Chem Pharm Bull 33:1367

    Article  CAS  Google Scholar 

  581. Liu CD, Yang N, Song Y, Wang LX, Zi JC, Zhang SW, Dunkin D, Busse P, Weir D, Tversky J, Miller RL, Goldfarb J, Zhan JX, Li XM (2015) Ganoderic acid C1 isolated from the anti-asthma formula, Ashmi™ suppresses TNF-α production by mouse macrophages and peripheral blood mononuclear cells from asthma patients. Int Immunopharmacol 27:224

    Article  CAS  Google Scholar 

  582. Fatmawati S, Shimizu K, Kondo R (2010) Ganoderic acid Df, a new triterpenoid with aldose reductase inhibitory activity from the fruiting body of Ganoderma lucidum. Fitoterapia 81:1033

    Article  CAS  Google Scholar 

  583. Morigiwa A, Kitabatake K, Fujimoto Y, Ikekawa N (1986) Angiotensin-converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem Pharm Bull 34:3025

    Article  CAS  Google Scholar 

  584. Yue QX, Song XY, Ma C, Feng LX, Guan SH, WY W, Yang M, Jiang BH, Liu X, Cui YJ, Guo DA (2010) Effects of triterpenes from Ganoderma lucidum on protein expression profile of Hela cells. Phytomedicine 17:606

    Article  CAS  Google Scholar 

  585. Chen NH, Liu JW, Zhong JJ (2008) Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression. J Pharm Sci 108:212

    Article  CAS  Google Scholar 

  586. Chen NH, Zhong JJ (2009) Ganoderic acid Me induces G1 arrest in wild-type p53 human tumor cells while G1/S transition arrest in p53-null cells. Process Biochem 44:928

    Article  CAS  Google Scholar 

  587. Jiang ZJ, Jin TT, Gao F, Liu JW, Zhong JJ, Zhao H (2011) Effects of ganoderic acid Me on inhibiting multidrug resistance and inducing apoptosis in multidrug resistant colon cancer cells. Process Biochem 46:1307

    Article  CAS  Google Scholar 

  588. Nishitoba T, Sato H, Shirasu S, Sakamura S (1987) Novel triterpenoids from the mycelial mat at the previous stage of fruiting of Ganoderma lucidum. Agric Biol Chem 51:619

    CAS  Google Scholar 

  589. Wang G, Zhao J, Liu JW, Huang YP, Zhong JJ, Tang W (2007) Enhancement of IL-2 and IFN-γ expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. Int Immunopharmacol 7:864

    Article  CAS  Google Scholar 

  590. Zhou L, Shi P, Chen NH, Zhong JJ (2011) Ganoderic acid Me induces apoptosis through mitochondria dysfunctions in human colon carcinoma cells. Process Biochem 46:219

    Article  CAS  Google Scholar 

  591. Liu RM, Zhong JJ (2011) Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma Hela cells. Phytomedicine 18:349

    Article  CAS  Google Scholar 

  592. Adams M, Christen M, Plitzko I, Zimmermann S, Brun R, Kaiser M, Hamburger M (2010) Antiplasmodial lanostanes from the Ganoderma lucidum mushroom. J Nat Prod 73:897

    Article  CAS  Google Scholar 

  593. Chen NH, Zhong JJ (2011) p53 is important for the anti-invasion of ganoderic acid T in human carcinoma cells. Phytomedicine 18:719

    Article  CAS  Google Scholar 

  594. Xu K, Liang X, Gao F, Zhong JJ, Liu JW (2010) Antimetastatic effect of ganoderic acid T in vitro through inhibition of cancer cell invasion. Process Biochem 45:1261

    Article  CAS  Google Scholar 

  595. Li CH, Chen PY, Chang UM, Kan LS, Fang WH, Tsai KS, Lin SB (2005) Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci 77:252

    Article  CAS  Google Scholar 

  596. Zhang W, Tao J, Yang X, Yang Z, Zhang L, Liu H, Wu K, Wu J (2014) Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem Biophys Res Commun 449:307

    Article  CAS  Google Scholar 

  597. Min BS, Nakamura N, Miyashiro H, Bae KW, Hattori M (1998) Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull 46:1607

    Article  CAS  Google Scholar 

  598. Min BS, Gao JJ, Nakamura N, Hattori M (2000) Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against Meth-A and LLC tumor cells. Chem Pharm Bull 48:1026

    Article  CAS  Google Scholar 

  599. Iwatsuki K, Akihisa T, Tokuda H, Ukiya M, Oshikubo M, Kimura Y, Asano T, Nomura A, Nishino H (2003) Lucidenic acids P and Q, methyl lucidenate P, and other triterpenoids from the fungus Ganoderma lucidum and their inhibitory effects on Epstein-Barr virus activation. J Nat Prod 66:1582

    Article  CAS  Google Scholar 

  600. Fujita A, Arisawa M, Saga M, Hayashi T, Morita N (1986) Two new lanostanoids from Ganoderma lucidum. J Nat Prod 49:1122

    Article  CAS  Google Scholar 

  601. Kim JW, Kim HI, Kim JH, Kwon OC, Son ES, Lee CS, Park YJ (2016) Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum. Int J Mol Sci 17:1798

    Google Scholar 

  602. Li B, Lee DS, Kang Y, Yao NQ, An RB, Kim YC (2012) Protective effect of ganodermanondiol isolated from the Lingzhi mushroom against tert-butyl hydroperoxide-induced hepatotoxicity through Nrf2-mediated antioxidant enzymes. Food Chem Toxicol 53:317

    Article  CAS  Google Scholar 

  603. Ha DT, Oh J, Khoi NM, Dao TT, Dung LV, Do TN, Lee SM, Jang TS, Jeong GS, Na M (2013) In vitro and in vivo hepatoprotective effect of ganodermanontriol against t-BHP-induced oxidative stress. J Ethnopharmacol 150:875

    Article  CAS  Google Scholar 

  604. Jedinak A, Jiang JH, Harvey K, Sliva D (2007) Ganodermanontriol: novel antitumor agent against colon cancer. Cancer Res 67(Suppl 9):1524

    Google Scholar 

  605. Jedinak A, Thyagarajansahu A, Jiang J, Sliva D (2011) Ganodermanontriol, a lanostanoid triterpene from Ganoderma lucidum, suppresses growth of colon cancer cells through β-catenin signaling. Int J Oncol 38:761

    CAS  Google Scholar 

  606. Jiang J, Jedinak A, Sliva D (2011) Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA. Biochem Biophys Res Commun 415:325

    Article  CAS  Google Scholar 

  607. Kennedy EM, P’pool SJ, Jiang JH, Sliva DD, Minto RE (2011) Semisynthesis and biological evaluation of ganodermanontriol and its stereoisomeric triols. J Nat Prod 74:2332

    Article  CAS  Google Scholar 

  608. Liu JQ, Wang CF, Li Y, Luo HR, Qiu MH (2012) Isolation and bioactivity evaluation of terpenoids from the medicinal fungus Ganoderma sinense. Planta Med 78:368

    Article  CAS  Google Scholar 

  609. Fatmawati S, Shimizu K, Kondo R (2010) Inhibition of aldose reductase in vitro by constituents of Ganoderma lucidum. Planta Med 76:1691

    Article  CAS  Google Scholar 

  610. Kim DH, Shim SB, Kim NJ, Jang IS (1999) β-Glucuronidase-inhibitory activity and hepatoprotective effect of Ganoderma lucidum. Biol Pharm Bull 22:162

    Article  CAS  Google Scholar 

  611. Komoda Y, Nakamura H, Ishihara S, Uchida M, Kohda H, Yamasaki K (1985) Structures of new terpenoid constituents of Ganoderma lucidum (Fr.) Karst. (Polyporaceae). Chem Pharm Bull 33:4829

    Article  CAS  Google Scholar 

  612. Lin CN, Tome WP, Won SJ (1990) A lanostanoid of Formosan Ganoderma lucidum. Phytochemistry 29:673

    Article  CAS  Google Scholar 

  613. Lin CN, Tome WP, Won SJ (1991) Novel cytotoxic principles of Formosan Ganoderma lucidum. J Nat Prod 54:998

    Article  CAS  Google Scholar 

  614. Kikuchi T, Matsuda S, Murai Y, Ogita Z (1985) Ganoderic acid G and I and ganolucidic acid A and B, new triterpenoids from Ganoderma lucidum. Chem Pharm Bull 33:2628

    Article  CAS  Google Scholar 

  615. Nishitoba T, Sato H, Sakamura S (1985) New terpenoids, ganoderic acid J and ganolucidic acid C, from the fungus Ganoderma lucidum. Agric Biol Chem 49:3637

    CAS  Google Scholar 

  616. Nishitoba T, Sato H, Kasai T, Kawagishi H, Sakamura S (1985) New bitter C27 and C30 terpenoids from the fungus Ganoderma lucidum (Reishi). Agric Biol Chem 49:1793

    CAS  Google Scholar 

  617. Hsu CL, Yu YS, Yen GC (2008) Lucidenic acid B induces apoptosis in human leukemia cells via a mitochondria-mediated pathway. J Agric Food Chem 56:3973

    Article  CAS  Google Scholar 

  618. Akihisa T, Nakamura Y, Tagata M, Tokuda H, Yasukawa K, Uchiyama E, Suzuki T, Kimura Y (2007) Anti-inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chem Biodivers 4:224

    Article  CAS  Google Scholar 

  619. Mizushina Y, Takahashi N, Hanashima L, Koshino H, Esumi Y, Uzawa J, Sugawara F, Sakaguchi K (1999) Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, Ganoderma lucidum. Bioorg Med Chem 7:2047

    Article  CAS  Google Scholar 

  620. Sato H, Nishitoba T, Shirasu S, Oda K, Sakamura S (1986) Ganoderiol A and B, new triterpenoids from the fungus Ganoderma lucidum (Reishi). Agric Biol Chem 50:2887

    CAS  Google Scholar 

  621. Wu GS, Song YL, Yin ZQ, Guo JJ, Wang SP, Zhao WW, Chen XP, Zhang QW, Lu JJ, Wang YT (2013) Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway. PLoS One 8:e76620

    Article  CAS  Google Scholar 

  622. Chang UM, Li CH, Lin LI, Huang CP, Kan LS, Lin SB (2006) Ganoderiol F, a Ganoderma triterpene, induces senescence in hepatoma HepG2 cells. Life Sci 79:1129

    Article  CAS  Google Scholar 

  623. Levita J, Chao KH, Mutakin M (2014) Interactions of ganoderiol F with aspartic proteases of HIV and plasmepsin for anti-HIV and anti-malarial discovery. Int J Pharm Pharm Sci 6:561

    CAS  Google Scholar 

  624. Zhang Q, Zuo F, Nakamura N, Ma CM, Hattori M (2009) Metabolism and pharmacokinetics in rats of ganoderiol F, a highly cytotoxic and antitumor triterpene from Ganoderma lucidum. J Nat Med 63:304

    Article  CAS  Google Scholar 

  625. Fatmawati S, Shimizu K, Kondo R (2011) Ganoderol B: a potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine 18:1053

    Article  CAS  Google Scholar 

  626. Liu J, Shimizu K, Konishi F, Kumamoto S, Kondo R (2007) The anti-androgen effect of ganoderol B isolated from the fruiting body of Ganoderma lucidum. Bioorg Med Chem 15:4966

    Article  CAS  Google Scholar 

  627. Tung NT, Trang Tran TT, Cuong TD, Thu NV, Woo Mi H, Min BS (2014) Cytotoxic triterpenoids from the fruiting bodies of Ganoderma lucidum. Nat Prod Sci 20:7

    Google Scholar 

  628. Lee I, Seo J, Kim J, Kim H, Youn U, Lee J, Jung H, Na M, Hattori M, Min B, Bae K (2010) Lanostane triterpenes from the fruiting bodies of Ganoderma lucidum and their inhibitory effects on adipocyte differentiation in 3T3-L1 cells. J Nat Prod 73:172

    Article  CAS  Google Scholar 

  629. Ko HH, Hung CF, Wang JP, Lin CN (2008) Antiinflammatory triterpenoids and steroids from Ganoderma lucidum and G. tsugae. Phytochemistry 69:234

    Article  CAS  Google Scholar 

  630. Ma K, Ren JW, Han JJ, Bao L, Li L, Yao YJ, Sun C, Zhou B, Liu HW (2014) Ganoboninketals A–C, antiplasmodial 3,4-seco-27-norlanostane triterpenes from Ganoderma boninense Pat. J Nat Prod 77:1847

    Article  CAS  Google Scholar 

  631. Peng XR, Liu JQ, Wang CF, Li XY, Shu Y, Zhou L, Qiu MH (2014) Hepatoprotective effects of triterpenoids from Ganoderma cochlear. J Nat Prod 77:737

    Article  CAS  Google Scholar 

  632. Peng XR, Wang X, Zhou L, Hou B, Zuo ZL, Qiu MH (2015) Ganocochlearic acid A, a rearranged hexanorlanostane triterpenoid, and cytotoxic triterpenoids from the fruiting bodies of Ganoderma cochlear. RSC Adv 5:95212

    Article  CAS  Google Scholar 

  633. Nguyen VT, Tung NT, Cuong TD, Hung TM, Kim JA, Woo MH, Choi JS, Lee JH, Min BS (2015) Cytotoxic and anti-angiogenic effects of lanostane triterpenoids from Ganoderma lucidum. Phytochem Lett 12:69

    Article  CAS  Google Scholar 

  634. Wang K, Bao L, Xiong WP, Ma K, Han JJ, Wang WZ, Yin WB, Liu HW (2015) Lanostane triterpenes from the Tibetan medicinal mushroom Ganoderma leucocontextum and their inhibitory effects on HMG-CoA reductase and α-glucosidase. J Nat Prod 78:1977

    Article  CAS  Google Scholar 

  635. Zhao ZZ, Yin RH, Chen HP, Feng T, Li ZH, Dong ZJ, Cui BK, Liu JK (2015) Two new triterpenoids from fruiting bodies of fungus Ganoderma lucidum. J Asian Nat Prod Res 17:750

    Article  CAS  Google Scholar 

  636. Isaka M, Chinthanom P, Sappan M, Danwisetkanjana K, Boonpratuang T, Choeyklin R (2016) Antitubercular lanostane triterpenes from cultures of the basidiomycete Ganoderma sp. BCC 16642. J Nat Prod 79:161

    Article  CAS  Google Scholar 

  637. Lin LJ, Shiao MS, Yeh SF (1988) Seven new triterpenes from Ganoderma lucidum. J Nat Prod 51:918

    Article  CAS  Google Scholar 

  638. Zhao ZZ, Chen HP, Huang Y, Li ZH, Zhang L, Feng T, Liu JK (2016) Lanostane triterpenoids from fruiting bodies of Ganoderma leucocontextum. Nat Prod Bioprospect 6:103

    Article  CAS  Google Scholar 

  639. Zhao ZZ, Chen HP, Li ZH, Dong ZJ, Xue B, Zhou ZY, Feng T, Liu JK (2016) Leucocontextins A-R, lanostane-type triterpenoids from Ganoderma leucocontextum. Fitoterapia 109:91

    Article  CAS  Google Scholar 

  640. Kleinwachter P, Anh N, Kiet TT, Schlegel B, Dahse HM, Hartl A, Grafe U (2001) Colossolactones, new triterpenoid metabolites from a Vietnamese mushroom Ganoderma colossum. J Nat Prod 64:236

    Article  CAS  Google Scholar 

  641. Lakornwong W, Kanokmedhakul K, Kanokmedhakul S, Kongsaeree P, Prabpai S, Sibounnavong P, Soytong K (2014) Triterpene lactones from cultures of Ganoderma sp. KM01. J Nat Prod 77:1545

    Article  CAS  Google Scholar 

  642. El Dine RS, El Halawany AM, Ma CM, Hattori M (2008) Anti-HIV-1 protease activity of lanostane triterpenes from the Vietnamese mushroom Ganoderma colossum. J Nat Prod 71:1022

    Article  CAS  Google Scholar 

  643. El Dine RS, El Halawany AM, Nakamura N, Ma CM, Hattori M (2008) New lanostane triterpene lactones from the Vietnamese mushroom Ganoderma colossum (Fr.) C.F. Baker. Chem Pharm Bull 56:642

    Article  Google Scholar 

  644. Mothana RA, Awadh Ali NA, Jansen R, Wegner U, Mentel R, Lindequist U (2003) Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia 74:177

    Article  CAS  Google Scholar 

  645. Niedermeyer Timo HJ, Lindequist U, Mentel R, Gördes D, Schmidt E, Thurow K, Lalk M (2005) Antiviral terpenoid constituents of Ganoderma pfeifferi. J Nat Prod 68:1728

    Article  CAS  Google Scholar 

  646. El-Mekkawy S, Meselhy Meselhy R, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T (1998) Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49:1651

    Article  CAS  Google Scholar 

  647. Shiao MS, Lin LJ, Yeh SF (1988) Triterpenes from Ganoderma lucidum. Phytochemistry 27:2911

    Article  CAS  Google Scholar 

  648. Chen DF, Zhang SX, Wang HK, Zhang SY, Sun QZ, Cosentino LM, Lee KH (1999) Novel anti-HIV lancilactone C and related triterpenes from Kadsura lancilimba. J Nat Prod 62:94

    Article  CAS  Google Scholar 

  649. Chen YP, Lin ZW, Zhang HJ, Sun HD (1990) A triterpenoid from Kadsura heteroclita. Phytochemistry 29:3358

    Article  CAS  Google Scholar 

  650. Liu JS, Huang MF (1983) Schisanlactone B, a new triterpenoid from a Schisandra sp. Tetrahedron Lett 24:2355

    Article  CAS  Google Scholar 

  651. Liu JS, Huang MF, Arnold GF, Arnold E, Clardy J, Ayer WA (1983) Schisanlactone A, a new type of triterpenoid from a Schisandra sp. Tetrahedron Lett 24:2351

    Article  CAS  Google Scholar 

  652. Geethangili M, Tzeng YM (2011) Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid-Based Complement Alternat Med 2011:212641

    Article  Google Scholar 

  653. Chen CH, Yang SW, Shen YC (1995) New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. J Nat Prod 58:1655

    Article  CAS  Google Scholar 

  654. Lin MK, Lee MS, Chang WT, Chen HY, Chen JF, Li YR, Lin CC, Wu TS (2015) Immunosuppressive effect of zhankuic acid C from Taiwanofungus camphoratus on dendritic cell activation and the contact hypersensitivity response. Bioorg Med Chem Lett 25:4637

    Article  CAS  Google Scholar 

  655. Yang SW, Shen YC, Chen CH (1996) Steroids and triterpenoids of Antodia cinnamomea – a fungus parasitic on Cinnamomum micranthum. Phytochemistry 41:1389

    Article  CAS  Google Scholar 

  656. Su YC, Liu CT, Chu YL, Raghu R, Kuo YH, Sheen LY (2012) Eburicoic acid, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces ER stress-mediated autophagy in human hepatoma cells. J Tradit Complement Med 2:312

    Article  Google Scholar 

  657. Deng JY, Chen SJ, Jow GM, Hsueh CW, Jeng CJ (2009) Dehydroeburicoic acid induces calcium- and calpain-dependent necrosis in human U87MG glioblastomas. Chem Res Toxicol 22:1817

    Article  CAS  Google Scholar 

  658. Deng JS, Huang SS, Lin TH, Lee MM, Kuo CC, Sung PJ, Hou WC, Huang GJ, Kuo YH (2013) Analgesic and anti-inflammatory bioactivities of eburicoic acid and dehydroeburicoic acid isolated from Antrodia camphorata on the inflammatory mediator expression in mice. J Agric Food Chem 61:5064

    Article  CAS  Google Scholar 

  659. Du YC, Chang FR, Wu TY, Hsu YM, El-Shazly M, Chen CF, Sung PJ, Lin YY, Lin YH, Wu YC, Lu MC (2012) Antileukemia component, dehydroeburicoic acid from Antrodia camphorata induces DNA damage and apoptosis in vitro and in vivo models. Phytomedicine 19:788

    Article  CAS  Google Scholar 

  660. Kuo YH, Lin CH, Shih CC (2015) Antidiabetic and antihyperlipidemic properties of a triterpenoid compound, dehydroeburicoic acid, from Antrodia camphorata in vitro and in streptozotocin-induced mice. J Agric Food Chem 63:10140

    Article  CAS  Google Scholar 

  661. Lai KH, Du YC, Lu MC, Wu TY, Hsu YM, Lin YC, El-Shazly M, Chu TS, Chen CF, Chang FR, Wu YC (2012) Dehydroeburicoic acid, an antileukemic triterpene from the fruiting bodies of dish-cultured Antrodia cinnamomea. Planta Med 78:1084

    Google Scholar 

  662. Lu ZM, Xu ZH (2011) Antcin A contributes to anti-inflammatory effect of Niuchangchih (Antrodia camphorata). Acta Pharm Sin 32:981

    Article  CAS  Google Scholar 

  663. Lin TY, Chien SC, Kuo YH, Wang SY (2012) Distinguishing between R- and S-antcin C and their cytotoxicity. Nat Prod Commun 7:835

    CAS  Google Scholar 

  664. Hsieh YC, Rao Yerra K, Wu CC, Huang CYF, Geethangili M, Hsu SL, Tzeng YM (2010) Methyl antcinate A from Antrodia camphorata induces apoptosis in human liver cancer cells through oxidant-mediated Cofilin-and Bax-triggered mitochondrial pathway. Chem Res Toxicol 23:1256

    Article  CAS  Google Scholar 

  665. Tsai WC, Rao YK, Lin SS, Chou MY, Shen YT, Wu CH, Geethangili M, Yang CC, Tzeng YM (2010) Methylantcinate A induces tumor specific growth inhibition in oral cancer cells via Bax-mediated mitochondrial apoptotic pathway. Bioorg Med Chem Lett 20:6145

    Article  CAS  Google Scholar 

  666. Hsieh YC, Rao YK, Whang-Peng J, Huang CYF, Shyue SK, Hsu SL, Tzeng YM (2011) Antcin B and its ester derivative from Antrodia camphorata induce apoptosis in hepatocellular carcinoma cells involves enhancing oxidative stress coincident with activation of intrinsic and extrinsic apoptotic pathway. J Agric Food Chem 59:10943

    Article  CAS  Google Scholar 

  667. Shen CC, Wang YH, Chang TT, Lin LC, Don MJ, Hou YC, Lious KT, Chang S, Wang WY, Ko HC, Shen YC (2007) Anti-inflammatory ergostanes from the basidiomata of Antrodia salmonea. Planta Med 73:1208

    Article  CAS  Google Scholar 

  668. Huang YL, Chu YL, Ho CT, Chung JG, Lai CI, YC S, Kuo YH, Sheen LY (2015) Antcin K, an active triterpenoid from the fruiting bodies of basswood-cultivated Antrodia cinnamomea, inhibits metastasis via suppression of lntegrin-mediated adhesion, migration, and invasion in human hepatoma cells. J Agric Food Chem 63:4561

    Article  CAS  Google Scholar 

  669. Lai CI, Chu YL, Ho CT, Su YC, Kuo YH, Sheen LY (2016) Antcin K, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces mitochondria and endoplasmic reticulum stress-mediated apoptosis in human hepatoma cells. J Tradit Complement Med 6:48

    Article  Google Scholar 

  670. Wu SJ, Leu YL, Chen CH, Chao CH, Shen DY, Chan HH, Lee EJ, Wu TS, Wang YH, Shen YC, Qian KD, Bastow KF, Lee KH (2010) Camphoratins A-J, potent cytotoxic and anti-inflammatory triterpenoids from the fruiting body of Taiwanofungus camphoratus. J Nat Prod 73:1756

    Article  CAS  Google Scholar 

  671. Huang HC, Liaw CC, Yang HL, Hseu YC, Kuo HT, Tsai YC, Chien SC, Amagaya S, Chen YC, Kuo YH (2012) Lanostane triterpenoids and sterols from Antrodia camphorata. Phytochemistry 84:177

    Article  CAS  Google Scholar 

  672. Liaw CC, Chen YC, Huang GJ, Tsai YC, Chien SC, Wu JH, Wang SY, Chao LK, Sung PJ, Huang HC, Kuo YH (2013) Anti-inflammatory lanostanoids and lactone derivatives from Antrodia camphorata. J Nat Prod 76:489

    Article  CAS  Google Scholar 

  673. Qiao X, An R, Huang Y, Ji S, Li L, Tzeng YM, Guo DA, Ye M (2014) Separation of (25R/S)-ergostane triterpenoids in the medicinal mushroom Antrodia camphorata using analytical supercritical-fluid chromatography. J Chromatogr A 1358:252

    Article  CAS  Google Scholar 

  674. Kuo YH, Huang GJ (2012) New anti-inflammatory aromatic and triterpene components from Antrodia camphorata. Planta Med 78:1190

    Google Scholar 

  675. Rios JL (2011) Chemical constituents and pharmacological properties of Poria cocos. Planta Med 77:681

    Article  CAS  Google Scholar 

  676. She GM, Zhu NL, Wang S, Liu Y, Ba YY, Sun CQ, Shi RB (2012) New lanostane-type triterpene acids from Wolfiporia extensa. Chem Cent J 6:39

    CAS  Google Scholar 

  677. Lai K, Lu MC, Du YC, El-Shazly M, Wu TY, Hsu YM, Henz A, Yang JC, Backlund A, Chang FR, Wu YC (2016) Cytotoxic lanostanoids from Poria cocos. J Nat Prod 79:2805

    Article  CAS  Google Scholar 

  678. Li SP, Wang ZX, Gu R, Zhao YW, Huang WZ, Wang ZZ, Xiao W (2016) A new epidioxy-tetracyclic triterpenoid from Poria cocos Wolf. Nat Prod Res 30:1712

    Article  CAS  Google Scholar 

  679. Huang YC, Chang WL, Huang SF, Lin CY, Lin HC, Chang TC (2010) Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur J Pharmacol 648:39

    Article  CAS  Google Scholar 

  680. Ling H, Jia XB, Zhang YC, Gapter LA, Lim YS, Agarwal R, Ng KY (2010) Pachymic acid inhibits cell growth and modulates arachidonic acid metabolism in nonsmall cell lung cancer A549 cells. Mol Carcinog 49:271

    CAS  Google Scholar 

  681. Ling H, Zhang YC, Ng KY, Chew EH (2011) Pachymic acid impairs breast cancer cell invasion by suppressing nuclear factor-κB-dependent matrix metalloproteinase-9 expression. Breast Cancer Res Treat 126:609

    Article  CAS  Google Scholar 

  682. Shah VK, Choi JJ, Han JY, Lee MK, Hong JT, Oh KW (2014) Pachymic acid enhances pentobarbital-induced sleeping behaviors via GABAA-ergic systems in mice. Biomol Ther 22:314

    Article  CAS  Google Scholar 

  683. Chen YG, Lian PL, Liu YF, Xu KS (2015) Pachymic acid inhibits tumorigenesis in gallbladder carcinoma cells. Int J Clin Exp Med 8:17781

    Google Scholar 

  684. Cheng S, Swanson K, Eliaz I, McClintick JN, Sandusky GE, Sliva D (2015) Pachymic acid inhibits growth and induces apoptosis of pancreatic cancer in vitro and in vivo by targeting ER stress. PLoS One 10:e0122270

    Article  CAS  Google Scholar 

  685. Jeong JW, Lee WS, Go SI, Nagappan A, Baek JY, Lee JD, Lee SJ, Park C, Kim GY, Kim HJ, Kim GS, Kwon TK, Ryu CH, Shin SC, Choi YH (2015) Pachymic acid induces apoptosis of EJ bladder cancer cells by DR5 up-regulation, ROS generation, modulation of BCL-2 and IAP family members. Phytother Res 29:1516

    Article  CAS  Google Scholar 

  686. Li FF, Yuan Y, Liu Y, Wu QQ, Jiao R, Yang Z, Zhou MQ, Tang QZ (2015) Pachymic acid protects H9C2 cardiomyocytes from lipopolysaccharide-induced inflammation and apoptosis by inhibiting the extracellular signal-regulated kinase 1/2 and p38 pathways. Mol Med Rep 12:2807

    CAS  Google Scholar 

  687. Ma J, Liu J, Lu CW, Cai DF (2015) Pachymic acid induces apoptosis via activating ROS-dependent JNK and ER stress pathways in lung cancer cells. Cancer Cell Int 15:78

    Article  CAS  Google Scholar 

  688. Stanikunaite R, Radwan MM, Trappe JM, Fronczek F, Ross SA (2008) Lanostane-type triterpenes from the mushroom Astraeus pteridis with antituberculosis activity. J Nat Prod 71:2077

    Article  CAS  Google Scholar 

  689. Arpha K, Phosri C, Suwannasai N, Mongkolthanaruk W, Sodngam S (2012) Astraodoric acids A-D: new lanostane triterpenes from edible mushroom Astraeus odoratus and their anti-Mycobacterium tuberculosis H37RA and cytotoxic activity. J Agric Food Chem 60:9834

    Article  CAS  Google Scholar 

  690. Isaka M, Palasarn S, Srikitikulchai P, Vichai V, Komwijit S (2016) Astraeusins A–L, lanostane triterpenoids from the edible mushroom Astraeus odoratus. Tetrahedron 72:3288

    Article  CAS  Google Scholar 

  691. Lai TK, Biswas G, Chatterjee S, Dutta A, Pal C, Banerji J, Bhuvanesh N, Reibenspies JH, Acharya K (2012) Leishmanicidal and anticandidal activity of constituents of Indian edible mushroom Astraeus hygrometricus. Chem Biodivers 9:1517

    Article  CAS  Google Scholar 

  692. Mallick S, Dey S, Mandal S, Dutta A, Mukherjee D, Biswas G, Chatterjee S, Mallick S, Lai TK, Acharya K, Pal C (2015) A novel triterpene from Astraeus hygrometricus induces reactive oxygen species leading to death in Leishmania donovani. Future Microbiol 10:763

    Article  CAS  Google Scholar 

  693. Pimjuk P, Phosri C, Wauke T, McCloskey S (2015) The isolation of two new lanostane triterpenoid derivatives from the edible mushroom Astraeus asiaticus. Phytochem Lett 14:79

    Article  CAS  Google Scholar 

  694. Adam HK, Bryce TA, Campbell IM, NJ MC, Gaudemer A, Gmelin R, Polonsky J (1967) Metabolites of the Polyporaceae II. Carboxyacetylquercinic acid – a novel triterpene conjugate from Daedalea quercina. Tetrahedron Lett:1461

    Google Scholar 

  695. Kawagishi H, Li H, Tanno O, Inoue S, Ikeda S, Ohnishi-Kameyama M, Nagata T (1997) A lanostane-type triterpene from a mushroom Daedalea dickinsii. Phytochemistry 46:959

    Article  Google Scholar 

  696. Bae KG, Min TJ (2000) The structure and antibiotic activities of hydroxy acid of lanostenol compound in Daedalea dickinsii. Bull Kor Chem Soc 21:1199

    CAS  Google Scholar 

  697. Yoshikawa K, Kouso K, Takahashi J, Matsuda A, Okazoe M, Umeyama A, Arihara S (2005) Cytotoxic constituents of the fruit body of Daedalea dickisii. J Nat Prod 68:911

    Article  CAS  Google Scholar 

  698. Sorribas A, Jimenez JI, Yoshida WY, Williams PG (2011) Daedalols A–C, fungal-derived BACE1 inhibitors. Bioorg Med Chem 19:6581

    Article  CAS  Google Scholar 

  699. Mizushina Y, Tanaka N, Kitamura A, Tamai K, Ikeda M, Takemura M, Sugawara F, Arai T, Matsukage A, Yoshida S, Sakaguchi K (1998) The inhibitory effect of novel triterpenoid compounds, fomitellic acids, on DNA polymerase β. Biochem J 330:1325

    Article  CAS  Google Scholar 

  700. Tanaka N, Kitamura A, Mizushina Y, Sugawara F, Sakaguchi K (1998) Fomitellic acids, triterpenoid inhibitors of eukaryotic DNA polymerases from a basidiomycete, Fomitella fraxinea. J Nat Prod 61:193

    Article  CAS  Google Scholar 

  701. He J, Feng XZ, Lu Y, Zhao B (2003) Fomlactones A-C, novel triterpene lactones from Fomes cajanderi. J Nat Prod 66:1249

    Article  CAS  Google Scholar 

  702. Quang DN, Arakawa Y, Hashimoto T, Asakawa Y (2005) Lanostane triterpenoids from the inedible mushroom Fomitopsis spraguei. Phytochemistry 66:1656

    Article  CAS  Google Scholar 

  703. Yoshikawa K, Inoue M, Matsumoto Y, Sakakibara C, Miyataka H, Matsumoto H, Arihara S (2005) Lanostane triterpenoids and triterpene glycosides from the fruit body of Fomitopsis pinicola and their inhibitory activity against COX-1 and COX-2. J Nat Prod 68:69

    Article  CAS  Google Scholar 

  704. Bhattarai G, Lee YH, Lee NH, Lee IK, Yun BS, Hwang PH, Yi HK (2012) Fomitoside-K from Fomitopsis nigra induces apoptosis of human oral squamous cell carcinomas (YD-10B) via mitochondrial signaling pathway. Biol Pharm Bull 35:1711

    Article  CAS  Google Scholar 

  705. Lee IK, Jung JY, Yeom JH, Ki DW, Lee MS, Yeo WH, Yun BS (2012) Fomitoside K, a new lanostane triterpene glycoside from the fruiting body of Fomitopsis nigra. Mycobiology 40:76

    Article  CAS  Google Scholar 

  706. Popova M, Trusheva B, Gyosheva M, Tsvetkova I, Bankova V (2009) Antibacterial triterpenes from the threatened wood-decay fungus Fomitopsis rosea. Fitoterapia 80:263

    Article  CAS  Google Scholar 

  707. Chiba T, Sakurada T, Watanabe R, Yamaguchi K, Kimura Y, Kioka N, Kawagishi H, Matsuo M, Ueda K (2014) Fomiroid A, a novel compound from the mushroom Fomitopsis nigra, inhibits NPC1L1-mediated cholesterol uptake via a mode of action distinct from that of ezetimibe. PLoS One 9:e116162

    Article  CAS  Google Scholar 

  708. Feng W, Yang JS (2015) A new drimane sesquiterpenoid and a new triterpene lactone from fungus of Fomes officinalis. J Asian Nat Prod Res 17:1065

    Article  CAS  Google Scholar 

  709. Han J, Li L, Zhong J, Tohtaton Z, Ren Q, Han L, Huang X, Yuan T (2016) Officimalonic acids A−H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry 130:193

    Article  CAS  Google Scholar 

  710. De Bernardi M, Fronza G, Gianotti MP, Mellerio G, Vidari G, Vita-Finzi P (1983) Fungal metabolites XIII: new cytotoxic triterpene from Hebeloma species (Basidiomycetes). Tetrahedron Lett 24:1635

    Article  Google Scholar 

  711. Fujimoto H, Takano Y, Yamazaki M (1992) Isolation, identification and pharmacological studies on three toxic metabolites from a mushroom, Hebeloma spoliatum. Chem Pharm Bull 40:869

    Article  CAS  Google Scholar 

  712. Bocchi M, Garlaschelli L, Vidari G, Mellerio G (1992) New farnesane sesquiterpenes from Hebeloma senescens. J Nat Prod 55:428

    Article  CAS  Google Scholar 

  713. Dossena A, Lunghi A, Garlaschelli L, Vidari G (1996) The structure and absolute configuration of two novel triterpene depsipeptides from the fruiting bodies of Hebeloma senescens. Tetrahedron-Asymmetry 7:1911

    Article  CAS  Google Scholar 

  714. Garlaschelli L, Vidari G, Virtuani M, Vitafinzi P, Mellerio G (1995) The structures of new lanostane triterpenes from the fruiting bodies of Hebeloma senescens. J Nat Prod 58:992

    Article  CAS  Google Scholar 

  715. Shao HJ, Qing C, Wang F, Zhang YL, Luo DQ, Liu JK (2005) A new cytotoxic lanostane triterpenoid from the basidiomycete Hebeloma versipelle. J Antibiot 58:828

    Article  CAS  Google Scholar 

  716. Nakata T, Yamada T, Taji S, Ohishi H, Wada SI, Tokuda H, Sakuma K, Tanaka R (2007) Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorg Med Chem 15:257

    Article  CAS  Google Scholar 

  717. Nomura M, Takahashi T, Uesugi A, Tanaka R, Kobayashi S (2008) Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Res 28:2691

    CAS  Google Scholar 

  718. Taji S, Yamada T, Tanaka R (2008) Three new lanostane triterpenoids, inonotsutriols A, B, and C, from Inonotus obliquus. Helv Chim Acta 91:1513

    Article  CAS  Google Scholar 

  719. Taji S, Yamada T, Wada S, Tokuda H, Sakuma K, Tanaka R (2008) Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. Eur J Med Chem 43:2373

    Article  CAS  Google Scholar 

  720. Nakamura S, Iwami J, Matsuda H, Mizuno S, Yoshikawa M (2009) Absolute stereostructures of inoterpenes A–F from sclerotia of Inonotus obliquus. Tetrahedron 65:2443

    Article  CAS  Google Scholar 

  721. Handa N, Yamada T, Tanaka R (2010) An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry 71:1774

    Article  CAS  Google Scholar 

  722. Liu C, Zhao C, Pan HH, Kang J, Yu XT, Wang HQ, Li BM, Xie YZ, Chen RY (2014) Chemical constituents from Inonotus obliquus and their biological activities. J Nat Prod 77:35

    Article  CAS  Google Scholar 

  723. Zhao F, Mai Q, Ma J, Xu M, Wang X, Cui T, Qiu F, Han G (2015) Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia 101:34

    Article  CAS  Google Scholar 

  724. Ikeda M, Sato Y, Izawa M, Sassa T, Miura Y (1977) Isolation and structure of fasciculol A, a new plant growth inhibitor from Neamatoloma fasciculare. Agric Biol Chem 41:1539

    CAS  Google Scholar 

  725. Kim KH, Moon E, Choi SU, Kim SY, Lee KR (2013) Lanostane triterpenoids from the mushroom Naematoloma fasciculare. J Nat Prod 76:845

    Article  CAS  Google Scholar 

  726. Kubo I, Matsumoto A, Kozuka M, Wood WF (1985) Calmodulin inhibitors from the bitter mushroom Naematoloma fasciculare (Fr.) Karst. (Strophariaceae) and absolute configuration of fasciculols. Chem Pharm Bull 33:3821

    Article  CAS  Google Scholar 

  727. Suzuki K, Fujimoto H, Yamazaki M (1983) The toxic principles of Naematoloma fasciculare. Chem Pharm Bull 31:2176

    Article  CAS  Google Scholar 

  728. Nozoe S, Takahashi A, Ohta T (1993) Chirality of the 3-hydroxy-3-methylglutaric acid moiety of fasciculic acid A, a calmodulin antagonist isolated from Naematoloma fasciculare. Chem Pharm Bull 41:1738

    Article  CAS  Google Scholar 

  729. Takahashi A, Kusano G, Ohta T, Ohizumi Y, Nozoe S (1989) Fasciculic acids A, B and C as calmodulin antagonists from the mushroom Naematoloma fasciculare. Chem Pharm Bull 37:3247

    Article  CAS  Google Scholar 

  730. Jayasuriya H, Silverman KC, Zink DL, Jenkins RG, Sanchez M, Pelaez F, Vilella D, Lingham RB, Singh SB (1998) Clavaric acid: a triterpenoid inhibitor of farnesyl-protein transferase from Clavariadelphus truncatus. J Nat Prod 61:1568

    Article  CAS  Google Scholar 

  731. Yoshikawa K, Nishimura N, Bando S, Arihara S, Matsumura E, Katayama S (2002) New lanostanoids, elfvingic acids A−H, from the fruit body of Elfvingia applanata. J Nat Prod 65:548

    Article  CAS  Google Scholar 

  732. Weber W, Semar M, Anke T, Bross M, Steglich W (1992) Tyromycin A: a novel inhibitor of leucine and cysteine aminopeptidases from Tyromyces lacteus. Planta Med 58:56

    Article  CAS  Google Scholar 

  733. Quang DN, Hashimoto T, Tanaka M, Asakawa Y (2003) Tyromycic acids F and G: two new triterpenoids from the mushroom Tyromyces fissilis. Chem Pharm Bull 51:1441

    Article  CAS  Google Scholar 

  734. Quang DN, Hashimoto T, Tanaka M, Takaoka S, Asakawa Y (2004) Tyromycic acids B–E, new lanostane triterpenoids from the mushroom Tyromyces fissilis. J Nat Prod 67:148

    Article  CAS  Google Scholar 

  735. Su ZY, Tung YC, Hwang LS, Sheen LY (2011) Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways. J Agric Food Chem 59:5109

    Article  CAS  Google Scholar 

  736. Umeyama A, Ohta C, Shino Y, Okada M, Nakamura Y, Hamagaki T, Imagawa H, Tanaka M, Ishiyama A, Iwatsuki M, Otoguro K, Omura S, Hashimoto T (2014) Three lanostane triterpenoids with antitrypanosomal activity from the fruiting body of Hexagonia tenuis. Tetrahedron 70:8312

    Article  CAS  Google Scholar 

  737. Thang TD, Kuo PC, Ngoc NTB, Hwang TL, Yang ML, Ta SH, Lee EJ, Kuo DH, Hung NH, Tuan NN, Wu TS (2015) Chemical constituents from the fruiting bodies of Hexagonia apiaria and their anti-inflammatory activity. J Nat Prod 78:2552

    Article  CAS  Google Scholar 

  738. Han JJ, Bao L, Tao QQ, Yao YJ, Liu XZ, Yin WB, Liu HW (2015) Gloeophyllins A–J, cytotoxic ergosteroids with various skeletons from a Chinese Tibet fungus Gloeophyllum abietinum. Org Lett 17:2538

    Article  CAS  Google Scholar 

  739. Feng T, Cai JL, Li XM, Zhou ZY, Li ZH, Liu JK (2016) Chemical constituents and their bioactivities of mushroom Phellinus rhabarbarinus. J Agric Food Chem 64:1945

    Article  CAS  Google Scholar 

  740. Yoshikawa K, Kuroboshi M, Ahagon S, Arihara S (2004) Three novel crustulinol esters, saponaceols A-C, from Tricholoma saponaceum. Chem Pharm Bull 52:886

    Article  CAS  Google Scholar 

  741. Nasomjai P, Arpha K, Sodngam S, Brandt SD (2014) Potential antimalarial derivatives from astraodorol. Arch Pharm Res 37:1538

    Article  CAS  Google Scholar 

  742. Tanaka R, Usami Y, In Y, Ishida T, Shingu T, Matsunaga S (1992) The structure of spiroveitchionolide, an unusual lanostane-type triterpene lactone from Abies veitchii. J Chem Soc Chem Commun:1351

    Google Scholar 

  743. Tanaka R, Wada SI, Aoki H, Matsunaga S, Yamori T (2004) Spiromarienonols A and B: two new 7(8→9)abeo-lanostane-type triterpene lactones from the stem bark of Abies mariesii. Helv Chim Acta 87:240

    Article  CAS  Google Scholar 

  744. Zhao QQ, Song QY, Jiang K, Li GD, Wei WJ, Li Y, Gao K (2015) Spirochensilides A and B, two new rearranged triterpenoids from Abies chensiensis. Org Lett 17:2760

    Article  CAS  Google Scholar 

  745. Lingham RB, Silverman KC, Jayasuriya H, Kim BM, Amo SE, Wilson FR, Rew DJ, Schaber MD, Bergstrom JD, Koblan KS, Graham SL, Kohl NE, Gibbs JB, Singh SB (1998) Clavaric acid and steroidal analogues as Ras- and FPP-directed inhibitors of human farnesyl-protein transferase. J Med Chem 41:4492

    Article  CAS  Google Scholar 

  746. Zhou Y, Ma Y, Zeng J, Duan L, Xue X, Wang H, Lin T, Liu Z, Zeng K, Zhong Y, Zhang S, Hu Q, Liu M, Zhang H, Reed J, Moses T, Liu X, Huang P, Qing Z, Liu X, Tu P, Kuang H, Zhang Z, Osbourn A, Ro DK, Shang Y, Huang S (2016) Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat Plants 2:16183

    Article  CAS  Google Scholar 

  747. Fujimoto H, Suzuki K, Hagiwara H, Yamazaki M (1986) New toxic metabolites from a mushroom, Hebeloma vinosophyllum. 1. Structures of hebevinoside-I, hebevinoside-II, hebevinoside-III, hebevinoside-IV, and hebevinoside-V. Chem Pharm Bull 34:88

    Article  CAS  Google Scholar 

  748. Fujimoto H, Hagiwara H, Suzuki K, Yamazaki M (1987) New toxic metabolites from a mushroom, Hebeloma vinosophyllum. 2. Isolation and structures of hebevinoside-VI, hebevinoside-VII, hebevinoside-VIII, hebevinoside-IX, hebevinoside-X, and hebevinoside-XI. Chem Pharm Bull 35:2254

    Article  CAS  Google Scholar 

  749. Fujimoto H, Maeda K, Yamazaki M (1991) New toxic metabolites from a mushroom, Hebeloma vinosophyllum. 3. Isolation and structures of 3 new glycosides, hebevinoside-XII, hebevinoside-XIII and hebevinoside-XIV, and productivity of the hebevinosides at 3 growth-stages of the mushroom. Chem Pharm Bull 39:1958

    Article  CAS  Google Scholar 

  750. Clericuzio M, Mella M, Vita-Finzi P, Zema M, Vidari G (2004) Cucurbitane triterpenoids from Leucopaxillus gentianeus. J Nat Prod 67:1823

    Article  CAS  Google Scholar 

  751. Clericuzio M, Tabasso S, Bianco MA, Pratesi G, Beretta G, Tinelli S, Zunino F, Vidari G (2006) Cucurbitane triterpenes from the fruiting bodies and cultivated mycelia of Leucopaxillus gentianeus. J Nat Prod 69:1796

    Article  CAS  Google Scholar 

  752. Wang HB, Yang GH, Wu SH, Wang SF, Li GY, Xu WK, Meng LS, Li ZY (1994) Chemical studies on Russula rosacea. Acta Pharm Sin 29:43

    Google Scholar 

  753. Tan JW, Liu JK, Dong ZJ, Liu PG, Ji DG (1999) Lepida acid A from Basidiomycetes Russula lepida. Chin Chem Lett 10:297

    CAS  Google Scholar 

  754. Tan JW, Dong ZJ, Liu JK (2000) New terpenoids from Basidiomycetes Russula lepida. Helv Chim Acta 83:3191

    Article  CAS  Google Scholar 

  755. Tan JW, Dong ZJ, Ding ZH, Liu JK (2002) Lepidolide, a novel seco-ring-A cucurbitane triterpenoid from Russula lepida (Basidiomycetes). Z Naturforsch C 57:963

    CAS  Google Scholar 

  756. Clericuzio M, Vidari G, Cassino C, Legnani L, Toma L (2014) Roseic acid and roseolactones A and B, furan-cucurbitane triterpenes from Russula aurora and R. minutula (Basidiomycota). Eur J Org Chem 5462

    Google Scholar 

  757. De Bernardi M, Garlaschelli L, Gattl G, Vidari G, Finzi PV (1988) The unprecedented structure of saponaceolide A, a cytotoxic C-30 terpenoid from Tricholoma saponaceum. Tetrahedron 44:235

    Article  Google Scholar 

  758. De Bernardi M, Garlaschelli L, Toma L, Vidari G, Vita-Finzi P (1991) The structure of saponaceolides B, C, and D, new C-30 terpenoids from Tricholoma saponaceum. Tetrahedron 47:7109

    Article  Google Scholar 

  759. Yoshikawa K, Kuroboshi M, Arihara S, Miura N, Tujimura N, Sakamoto K (2002) New triterpenoids from Tricholoma saponaceum. Chem Pharm Bull 50:1603

    Article  CAS  Google Scholar 

  760. Yin X, Feng T, Shang JH, Zhao YL, Wang F, Li ZH, Dong ZJ, Luo XD, Liu JK (2014) Chemical and toxicological investigations of a previously unknown poisonous European mushroom Tricholoma terreum. Chem Eur J 20:7001

    Article  CAS  Google Scholar 

  761. Feng T, He J, Ai HL, Huang R, Li ZH, Liu JK (2015) Three new triterpenoids from European mushroom Tricholoma terreum. Nat Prod Bioprospect 5:205

    Article  CAS  Google Scholar 

  762. Bedry R, Baudrimont I, Deffieux G, Creppy EE, Pomies JP, Ragnaud JM, Dupon M, Neau D, Gabinski C, De Witte S, Chapalain JC, Beylot J, Godeau P (2001) Wild-mushroom intoxication as a cause of rhabdomyolysis. New Engl J Med 345:798

    Article  CAS  Google Scholar 

  763. Schüffler A, Anke T (2009) Secondary Metabolites of Basidiomycetes. In: Anke T, Weber D (eds) Physiology and Genetics XV: Selected Basic and Applied Aspects. Springer, Berlin, p 209

    Chapter  Google Scholar 

  764. Daum RS, Kar S, Kirkpatrick P (2007) Retapamulin. Nat Rev Drug Discov 6:865

    Article  CAS  Google Scholar 

  765. Paci A, Rezai K, Deroussent A, De Valeriola D, Re M, Weill S, Cvitkovic E, Kahatt C, Sha A, Waters S, Weems G, Vassal G, Lokiec F (2006) Pharmacokinetics, metabolism, and routes of excretion of intravenous irofulven in patients with advanced solid tumors. Drug Metab Dispos 34:1918

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Kai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chen, HP., Liu, JK. (2017). Secondary Metabolites from Higher Fungi. In: Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products 106. Progress in the Chemistry of Organic Natural Products, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-59542-9_1

Download citation

Publish with us

Policies and ethics