Skip to main content

Optimized Conflation of Authoritative and Crowd-Sourced Geographic Data: Creating an Integrated Bike Map

  • Conference paper
  • First Online:
Information Fusion and Intelligent Geographic Information Systems (IF&IGIS'17)

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

A complete and accurate geographic dataset is critical for relevant analysis and decision-making. This chapter proposes a four-step geographic data-conflation system: preprocessing, automatic conflation, evaluation, and manual adjustments. The automatic-conflation component uses an optimization approach to find matched features and a rubber-sheeting approach to complete spatial transformation. This system was tested using two bikeway datasets in Los Angeles County, California, from an authoritative source (Los Angeles County Metropolitan Transportation Authority) and an open source (OpenStreetMap). While bikeways that are already in both datasets are improved in terms of positional accuracy and attribute completeness, the conflated bikeway dataset also integrates complementary data in either of the input datasets. Experiments demonstrate the advantages of using crowd-sourced data to improve official bikeway data, which is important for building and maintaining high-quality bicycle-infrastructure datasets. The framework described in this chapter can be adapted to conflate other types of data themes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221

    Article  Google Scholar 

  2. Lynch MP, Saalfeld AJ (1985) Conflation: automated map compilation—a video game approach. In: Proceedings of AUTOCARTO 7, Washington, DC

    Google Scholar 

  3. Pohl C, Van Genderen JL (1998) Multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens 19(5):823–854

    Article  Google Scholar 

  4. Hall DL, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85(1):6–23

    Article  Google Scholar 

  5. Lenzerini M (2002) Data integration: a theoretical perspective. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (Madison, Wisconsin, June 2003–2005, 2002). PODS ‘02. ACM, New York, NY, pp 233–246

    Google Scholar 

  6. Elmagarmid AK, Panagiotis GI, Vassilios SV (2007) Duplicate record detection: a survey. IEEE Trans Knowl Data Eng 19:1–16

    Article  Google Scholar 

  7. Goodchild MF, Gopal S (eds) (1989) Accuracy of spatial databases. Taylor and Francis, New York

    Google Scholar 

  8. Heuvelink GBM, Burrough PA (2002) Developments in statistical approaches to spatial uncertainty and its propagation. Int J Geogr Inf Sci 16(2):111–113

    Article  Google Scholar 

  9. Zhang J, Goodchild MF (2002) Uncertainty in geographical information. Taylor and Francis, New York

    Book  Google Scholar 

  10. Couclelis H (2003) The certainty of uncertainty: GIS and the limits of geographic knowledge. Trans GIS 7(2):165–175

    Article  Google Scholar 

  11. Goodchild MF, Zhang J, Kyriakidis P (2009) Discriminant models of uncertainty in nominal fields. Trans GIS 13(1):7–23

    Article  Google Scholar 

  12. Heuvelink GBM (1998) Error propagation in environmental modelling with GIS. CRC

    Google Scholar 

  13. Shi W (2009) Principle of modeling uncertainties in spatial data and analyses. CRC

    Google Scholar 

  14. Kyriakidis PC, Shortridge AM, Goodchild MF (1999) Geostatistics for conflation and accuracy assessment of digital elevation models. Int J Geogr Inf Sci 13(7):677–707

    Article  Google Scholar 

  15. Saalfeld A (1988) Conflation automated map compilation. Int J Geogr Info Syst 2(3):217–228

    Article  Google Scholar 

  16. Safra E, Kanza Y, Sagiv Y, Doytsher Y (2006) Efficient integration of road maps. In: Proceedings of the 14th annual ACM international symposium on advances in geographic information systems. ACM, Arlington, Virginia, USA

    Google Scholar 

  17. Samal A, Seth S, Cueto K (2004) A feature-based approach to conflation of geospatial sources. Int J Geogr Inf Sci 18(5):459–489

    Article  Google Scholar 

  18. Chen C-C, Knoblock C, Shahabi C (2006) Automatically conflating road vector data with orthoimagery. GeoInformatica 10(4):495–530

    Article  Google Scholar 

  19. Brown LG (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376

    Article  Google Scholar 

  20. Zitová B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000

    Article  Google Scholar 

  21. Walter V, Fritsch D (1999) Matching spatial data sets: a statistical approach. Int J Geogr Inf Sci 13(5):445–473

    Article  Google Scholar 

  22. Filin S, Doytsher Y (1999) A linear mapping approach to map conflation: matching of polylines. Survey Land Info Syst 59(2):107–114

    Google Scholar 

  23. Doytsher Y, Filin S (2000) The detection of corresponding objects in a linear-based map conflation. Survey Land Info Syst 60(2):117–128

    Google Scholar 

  24. Olteanu Raimond A-M, Mustière S (2008) Data matching—a matter of belief. In: Headway in spatial data handling, pp 501–519

    Google Scholar 

  25. Li L, Goodchild MF (2010) Automatically and accurately matching objects in geospatial datasets. Adv Geo-Spat Inf Sci 10:71–79

    Google Scholar 

  26. Li L, Goodchild MF (2011) An optimisation model for linear feature matching in geographical data conflation. Int J Image Data Fusion 2(4):309–328

    Article  Google Scholar 

  27. Huh Y, Kim J, Lee J, Yu K, Shi W (2014) Identification of multi-scale corresponding object-set pairs between two polygon datasets with hierarchical co-clustering. ISPRS J Photogrammetry Remote Sens 88:60–68

    Article  Google Scholar 

  28. White MS, Griffin P (1985) Piecewise linear rubber-sheet map transformation. Am Cartographer 12:123–131

    Article  Google Scholar 

  29. Saalfeld A (1985) A fast rubber-sheeting transformation using simplicial coordinates. Am Cartographer 12:169–173

    Article  Google Scholar 

  30. Cobb MA, Chung MJ, F H III, Petry FE, Shaw KB, Miller HV (1998) A rule-based approach for the conflation of attributed vector data. Geoinformatica 2(1):7–35

    Article  Google Scholar 

  31. Pottinger RA, Bernstein PA (2003) Merging models based on given correspondences. In: Proceedings of the 29th international conference on Very large data bases—vol 29. VLDB Endowment, Berlin, Germany

    Google Scholar 

  32. Noy NF (2004) Semantic integration: a survey of ontology-based approaches. ACM SIGMOD Record 33(4):65–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linna Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Li, L., Valdovinos, J. (2018). Optimized Conflation of Authoritative and Crowd-Sourced Geographic Data: Creating an Integrated Bike Map. In: Popovich, V., Schrenk, M., Thill, JC., Claramunt, C., Wang, T. (eds) Information Fusion and Intelligent Geographic Information Systems (IF&IGIS'17). Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-59539-9_17

Download citation

Publish with us

Policies and ethics