Skip to main content

Hierarchical Architecture for Distributed Energy Resource Management

  • Chapter
  • First Online:
Stochastic Optimization for Distributed Energy Resources in Smart Grids

Abstract

In this chapter, we first describe the motivation for distributed energy resources (DERs) and briefly summarize the related work about DER management. Then, we present the research challenges for DER management in smart grids. To address these challenges, we introduce a novel hierarchical architecture for DER management in smart grids. The proposed hierarchy-based architecture provides higher flexibility for DER integration and greatly reduces the control overhead of the distribution system operator compared to the traditional single-level architecture that requires the operator to monitor and control every single DER unit. Under this hierarchical architecture, we also give content outlines for the remaining three chapters in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikos Hatziargyriou, Hiroshi Asano, Reza Iravani, and Chris Marnay. Microgrids. IEEE Power and Energy Magazine, 5(4):78–94, 2007.

    Article  Google Scholar 

  2. Johan Driesen and Farid Katiraei. Design for distributed energy resources. IEEE Power and Energy Magazine, 6(3):30–40, 2008.

    Article  Google Scholar 

  3. Farid Katiraei, Reza Iravani, Nikos Hatziargyriou, and Aris Dimeas. Microgrids management. IEEE Power and Energy Magazine, 6(3):54–65, 2008.

    Article  Google Scholar 

  4. A. Ipakchi and F. Albuyeh. Grid of the future. IEEE Power and Energy Magazine, 7(2):52–62, 2009.

    Article  Google Scholar 

  5. Vijay Vittal. The impact of renewable resources on the performance and reliability of the electricity grid. U.S. National Academy of Engineering, 2010.

    Google Scholar 

  6. P.F. Ribeiro, B.K. Johnson, M.L. Crow, A. Arsoy, and Y. Liu. Energy storage systems for advanced power applications. Proceedings of the IEEE, 89(12):1744–1756, Dec 2001.

    Google Scholar 

  7. B.P. Roberts and C. Sandberg. The role of energy storage in development of smart grids. Proceedings of the IEEE, 99(6):1139–1144, Jun 2011.

    Google Scholar 

  8. Tony Markel and Andrew Simpson. Plug-in hybrid electric vehicle energy storage system design. In Advanced Automotive Battery Conference, Baltimore, MD, May 2006.

    Google Scholar 

  9. Miao He, S. Murugesan, and Junshan Zhang. Multiple timescale dispatch and scheduling for stochastic reliability in smart grids with wind generation integration. In IEEE INFOCOM, pages 461–465, Shanghai, China, 2011.

    Google Scholar 

  10. R.N. Anderson, A. Boulanger, W.B. Powell, and W. Scott. Adaptive stochastic control for the smart grid. Proceedings of the IEEE, 99(6):1098–1115, Jun 2011.

    Google Scholar 

  11. A.-H. Mohsenian-Rad and A. Leon-Garcia. Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Transactions on Smart Grid, 1(2):120–133, Sep 2010.

    Google Scholar 

  12. M.J. Neely, A.S. Tehrani, and A.G. Dimakis. Efficient algorithms for renewable energy allocation to delay tolerant consumers. In IEEE SmartGridComm, pages 549–554, Washington, DC, Oct 2010.

    Google Scholar 

  13. A. Papavasiliou and S.S. Oren. Supplying renewable energy to deferrable loads: Algorithms and economic analysis. In IEEE Power and Energy Society General Meeting, 2010.

    Google Scholar 

  14. T. T. Kim and H. V. Poor. Scheduling power consumption with price uncertainty. IEEE Transactions on Smart Grid, 2(3):519–527, Sep 2011.

    Google Scholar 

  15. Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing System, 6(4):32–38, Sep 2007.

    Google Scholar 

  16. O. Ozel, K. Tutuncuoglu, Jing Yang, S. Ulukus, and A. Yener. Resource management for fading wireless channels with energy harvesting nodes. In IEEE INFOCOM, pages 456–460, 2011.

    Google Scholar 

  17. Shengbo Chen, P. Sinha, N.B. Shroff, and Changhee Joo. Finite-horizon energy allocation and routing scheme in rechargeable sensor networks. In IEEE INFOCOM, pages 2273–2281, 2011.

    Google Scholar 

  18. M. Gatzianas, L. Georgiadis, and L. Tassiulas. Control of wireless networks with rechargeable batteries. IEEE Transactions on Wireless Communications, 9(2):581–593, Feb. 2010.

    Google Scholar 

  19. Longbo Huang and Michael J. Neely. Utility optimal scheduling in energy harvesting networks. In ACM MobiHoc, 2011.

    Google Scholar 

  20. M.K.C. Marwali, H. Ma, S.M. Shahidehpour, and K.H. Abdul-Rahman. Short term generation scheduling in photovoltaic-utility grid with battery storage. IEEE Transactions on Power Systems, 13(3):1057–1062, Aug 1998.

    Google Scholar 

  21. Ruey-Hsun Liang and Jian-Hao Liao. A fuzzy-optimization approach for generation scheduling with wind and solar energy systems. IEEE Transactions on Power Systems, 22(4):1665–1674, Nov 2007.

    Google Scholar 

  22. Rahul Urgaonkar, Bhuvan Urgaonkary, Michael J. Neely, and Anand Sivasubramaniam. Optimal power cost management using stored energy in data centers. In ACM SIGMETRICS, pages 221–232, 2011.

    Google Scholar 

  23. Yuanxiong Guo, Zongrui Ding, Yuguang Fang, and Dapeng Wu. Cutting down electricity cost in internet data centers by using energy storage. In IEEE GLOBECOM, 2011.

    Google Scholar 

  24. Na Li, Lijun Chen, and Steven H. Low. Optimal demand response based on utility maximization in power networks. In IEEE Power and Energy Society General Meeting, 2011.

    Google Scholar 

  25. Libin Jiang and Steven H. Low. Multi-period optimal energy procurement and demand response in smart grid with uncertain supply. In Decision and Control and European Control Conference (CDC-ECC), 2011.

    Google Scholar 

  26. Eilyan Y. Bitar, Ram Rajagopal, Pramod P. Khargonekar, Kameshwar Poolla, and Pravin Varaiya. Bringing wind energy to market. IEEE Transactions on Power Systems, 27(3):1225–1235, August 2012.

    Google Scholar 

  27. A. Mohsenian-Rad, V.W.S. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia. Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Transactions on Smart Grid, 1(3):320–331, Dec 2010.

    Google Scholar 

  28. Yuanxiong Guo, Miao Pan, and Yuguang Fang. Optimal power management of residential customers in the smart grid. Parallel and Distributed Systems, IEEE Transactions on, 23(9):1593–1606, Septeneber 2012.

    Google Scholar 

  29. P. Palensky and D. Dietrich. Demand side management: Demand response, intelligent energy systems, and smart loads. IEEE Transactions on Industrial Informatics, 7(3):381–388, Aug 2011.

    Google Scholar 

  30. Hassan Farhangi. The path of the smart grid. IEEE Power and Energy Magazine, 8(1):18–28, 2010.

    Article  MathSciNet  Google Scholar 

  31. Danny Pudjianto, Charlotte Ramsay, and Goran Strbac. Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation, 1(1):10–16, 2007.

    Article  Google Scholar 

  32. Robert H Lasseter. Microgrids. In IEEE Power Engineering Society Winter Meeting. IEEE, 2002.

    Google Scholar 

  33. R. H. Lasseter. Smart distribution: coupled microgrids. Proceedings of the IEEE, 99(6): 1074–1082, 2011.

    Article  Google Scholar 

  34. Carlos A Hernandez-Aramburo, Tim C Green, and Nicolas Mugniot. Fuel consumption minimization of a microgrid. IEEE Transactions on Industry Applications, 41(3):673–681, 2005.

    Google Scholar 

  35. Antonis G Tsikalakis and Nikos D Hatziargyriou. Centralized control for optimizing microgrids operation. In IEEE Power and Energy Society General Meeting, 2011.

    Google Scholar 

  36. SX Chen, Hoay Beng Gooi, and MingQiang Wang. Sizing of energy storage for microgrids. IEEE Transactions on Smart Grid, 3(1):142–151, 2012.

    Google Scholar 

  37. Shaghayegh Bahramirad, Wanda Reder, and Amin Khodaei. Reliability-constrained optimal sizing of energy storage system in a microgrid. IEEE Transactions on Smart Grid, 3(4):2056–2062, 2012.

    Article  Google Scholar 

  38. Daniel E Olivares, Claudio A Cañizares, and Mehrdad Kazerani. A centralized energy management system for isolated microgrids. IEEE Transactions on Smart Grid, 5(4):1864–1875, 2014.

    Google Scholar 

  39. Duong Tung Nguyen and Long Bao Le. Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics. IEEE Transactions on Smart Grid, 5(4):1608–1620, 2014.

    Google Scholar 

  40. Xiaohong Guan, Zhanbo Xu, and Qing-Shan Jia. Energy-efficient buildings facilitated by microgrid. IEEE Transactions on Smart Grid, 1(3):243–252, 2010.

    Article  Google Scholar 

  41. Hao Liang, Bong Jun Choi, Atef Abdrabou, Weihua Zhuang, and Xuemin Sherman Shen. Decentralized economic dispatch in microgrids via heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 30(6):1061–1074, 2012.

    Google Scholar 

  42. Katayoun Rahbar, Jie Xu, and Rui Zhang. Real-time energy storage management for renewable integration in microgrid: An off-line optimization approach. IEEE Transactions on Smart Grid, 6(1):124–134, 2015.

    Article  Google Scholar 

  43. Ahmed Ouammi, Hanane Dagdougui, Louis Dessaint, and Roberto Sacile. Coordinated model predictive-based power flows control in a cooperative network of smart microgrids. IEEE Transactions on Smart Grid, 6(5):2233–2244, 2015.

    Article  Google Scholar 

  44. Emiliano Dall’Anese, Hao Zhu, and Georgios B Giannakis. Distributed optimal power flow for smart microgrids. IEEE Transactions on Smart Grid, 4(3):1464–1475, 2013.

    Google Scholar 

  45. Yoash Levron, Josep M Guerrero, and Yuval Beck. Optimal power flow in microgrids with energy storage. IEEE Transactions on Power Systems, 28(3):3226–3234, 2013.

    Google Scholar 

  46. Wenbo Shi, Xiaorong Xie, Chi-Cheng Chu, and Rajit Gadh. Distributed optimal energy management in microgrids. IEEE Transactions on Smart Grid, 6(3):1137–1146, 2015.

    Article  Google Scholar 

  47. Wenbo Shi, Na Li, Chi-Cheng Chu, and Rajit Gadh. Real-time energy management in microgrids. IEEE Transactions on Smart Grid, 2015.

    Google Scholar 

  48. Zhaoyu Wang, Bokan Chen, Jianhui Wang, Miroslav M Begovic, and Chen Chen. Coordinated energy management of networked microgrids in distribution systems. IEEE Transactions on Smart Grid, 6(1):45–53, 2015.

    Google Scholar 

  49. Nerea Ruiz, Iñigo Cobelo, and José Oyarzabal. A direct load control model for virtual power plant management. IEEE Transactions on Power Systems, 24(2):959–966, 2009.

    Article  Google Scholar 

  50. Marco Giuntoli and Davide Poli. Optimized thermal and electrical scheduling of a large scale virtual power plant in the presence of energy storages. IEEE Transactions on Smart Grid, 4(2):942–955, 2013.

    Article  Google Scholar 

  51. Elaheh Mashhour and Seyed Masoud Moghaddas-Tafreshi. Bidding strategy of virtual power plant for participating in energy and spinning reserve markets – part i: problem formulation. IEEE Transactions on Power Systems, 26(2):949–956, 2011.

    Google Scholar 

  52. E. Mashhour and S. M. Moghaddas-Tafreshi. Bidding strategy of virtual power plant for participating in energy and spinning reserve markets – part ii: numerical analysis. IEEE Transactions on Power Systems, 26(2):957–964, 2011.

    Article  Google Scholar 

  53. Hongming Yang, Dexin Yi, Junhua Zhao, and Zhaoyang Dong. Distributed optimal dispatch of virtual power plant via limited communication. IEEE Transactions on Power Systems, 3(28):3511–3512, 2013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Guo, Y., Fang, Y., Khargonekar, P.P. (2017). Hierarchical Architecture for Distributed Energy Resource Management. In: Stochastic Optimization for Distributed Energy Resources in Smart Grids. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-59529-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59529-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59528-3

  • Online ISBN: 978-3-319-59529-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics