Skip to main content

Considering Diversity in Spatial Decision Support Systems

  • Chapter
  • First Online:
GeoComputational Analysis and Modeling of Regional Systems

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

Spatial decision making processes often involve a diverse set of objectives, alternatives, and solution approaches. Formulating a spatial decision problem under these considerations will help decision makers and stakeholders understand the structure of the problem and explore the solutions. This paper provides a comprehensive overview of diversity in spatial decision making. Methodological frameworks for incorporating diversity in spatial decision making are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong MP (2000) Geography and computational science. Ann Assoc Am Geogr 90(1):146–156

    Article  Google Scholar 

  2. Beasley JE (1985) A note on solving large p-median problems. Eur J Oper Res 21:270–273

    Article  Google Scholar 

  3. Bennett DA, Xiao N, Armstrong MP (2004) Exploring the geographic ramifications of environmental policy using evolutionary algorithms. Ann Assoc Am Geogr 94(4):827–847

    Google Scholar 

  4. Brightman H (1978) Differences in ill-structured problem solving along the organizational hierarchy. Decis Sci 9(8):1–18

    Article  Google Scholar 

  5. Cooper L (1964) Heuristic methods for location-allocation problems. SIAM Rev 6:37–54

    Article  Google Scholar 

  6. Crepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):1–33

    Article  Google Scholar 

  7. Daskin MS (1995) Network and discrete location: models, algorithms, and applications. Wiley, New York

    Book  Google Scholar 

  8. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    Google Scholar 

  9. Eiben AE, Schippers CA (1998) On evolutionary exploration and exploitation. Fundam Inf 35(1–4):35–50

    Google Scholar 

  10. Estivill-Castro V, Murray A (2000) Hybrid optimization for clustering in data mining. In: CLAIO 2000, IMSIO, Mexico

    Google Scholar 

  11. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA

    Google Scholar 

  12. Holland JH (1975) Adaptations in natural and artificial systems. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  13. Hong L, Page SE (2004) Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proc Natl Acad Sci 46:16385–16389

    Article  Google Scholar 

  14. Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the first IEEE conference on evolutionary computation, IEEE World Congress on Computational Intelligence, vol 1. IEEE Service Center, Piscataway, NJ, pp 82–87

    Chapter  Google Scholar 

  15. Kirkpatrick S, Gelatt CD, Vecchi MP Jr (1983) Optimization by simulated annealing. Science 220:671–680

    Article  Google Scholar 

  16. Krzanowski RM, Raper J (1999) Hybrid genetic algorithm for transmitter location in wireless networks. Comput Environ Urban Syst 23:359–382

    Article  Google Scholar 

  17. Macmillan B (1997) Computing and the science of geography: the postmodern turn and the geocomputational twist. In: Proceedings of the 2rd international conference on GeoComputation, University of Otago, Otago, New Zealand, CD-ROM

    Google Scholar 

  18. Nalle DJ, Arthur JL, Sessions J (2002) Designing compact and contiguous reserve networks with a hybrid heuristic algorithm. Forensic Sci 48(1):59–68

    Google Scholar 

  19. Page SE (2007) The difference: how the power of diversity creates better groups, firms, schools, and societies. Princeton University Press, Princeton, NJ

    Google Scholar 

  20. Preux P, Talbi EG (1999) Towards hybrid evolutionary algorithms. Int Trans Oper Res 6(6):557–570

    Article  Google Scholar 

  21. Resende MGC, Werneck RE (2004) A hybrid heuristic for the p-median problem. J Heuristics 10:59–88

    Article  Google Scholar 

  22. Rosing KE (1997) An empirical investigation of the effectiveness of a vertex substitution heuristic. Environ Plann B Plann Des 24(1):59–67

    Article  Google Scholar 

  23. Rothlauf F (2006) Representations for genetic and evolutionary algorithms, 2nd edn. Springer, Berlin

    Google Scholar 

  24. Simon HA (1960) The new science of management decision. Harper and Row, New York

    Book  Google Scholar 

  25. Simon HA (1977) The structure of ill-structured problems. In: Models of discovery. Boston studies in the philosophy of science, vol 54. Springer, Dordrecht, pp 304–325

    Google Scholar 

  26. Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  27. Surowiecki J (2004) The wisdom of crowds. Anchor, New York, NY

    Google Scholar 

  28. Tapscott D, Williams AD (2008) Wikinomics: how mass collaboration changes everything. Portfolio, New York, NY

    Google Scholar 

  29. Tarokh M (2007) Genetic path planning with fuzzy logic adaptation for rovers traversing rough terrain. In: Castillo O, Melin P, Kacprzyk J, Pedrycz W (eds) Hybrid intelligent systems. Studies in fuzziness and soft computing, vol 208. Springer, Berlin, pp 215–228

    Chapter  Google Scholar 

  30. Tarokh M (2008) Hybrid intelligent path planning for articulated rovers in rough terrain. Fuzzy Sets Syst 159(21):2927–2937

    Article  Google Scholar 

  31. Teitz MB, Bart P (1968) Heuristic methods for estimating the generalized vertex median of a weighted graph. Oper Res 16:955–961

    Article  Google Scholar 

  32. Tong D, Murray AT (2012) Spatial optimization in geography. Ann Assoc Am Geogr 102(6):1290–1309

    Article  Google Scholar 

  33. Weaver JB, Hess S (1963) A procedure for non-partisan districting. Yale Law J 73:288–309

    Article  Google Scholar 

  34. Whitaker R (1983) A fast algorithm for the greedy interchange of large-scale clustering and median location problems. INFOR 21:95–108

    Google Scholar 

  35. Xiao N (2008) A unified conceptual framework for geographical optimization using evolutionary algorithms. Ann Assoc Am Geogr 98(4):795–817

    Article  Google Scholar 

  36. Xiao N (2012) A parallel cooperative hybridization approach to the p-median problem. Environ Plann B Plann Des 39:755–774

    Article  Google Scholar 

  37. Xiao N, Armstrong MP (2003) A specialized island model and its application in multiobjective optimization. In: Cantú-Paz E, et al (eds) Genetic and evolutionary computation — GECCO 2003. Lecture notes in computer science, vol 2724. Springer, Berlin, pp 1530–1540

    Chapter  Google Scholar 

  38. Xiao N, Bennett DA, Armstrong MP (2007) Interactive evolutionary approaches to multiobjective spatial decision making: a synthetic review. Comput Environ Urban Syst 30:232–252

    Article  Google Scholar 

Download references

Acknowledgements

An early version of this paper was presented at GeoComputation 2007 in Maynooth, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningchuan Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Xiao, N. (2018). Considering Diversity in Spatial Decision Support Systems. In: Thill, JC., Dragicevic, S. (eds) GeoComputational Analysis and Modeling of Regional Systems. Advances in Geographic Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-59511-5_3

Download citation

Publish with us

Policies and ethics