Skip to main content

Assessing Drug Concentration in Skin: Direct and Indirect Methods

  • Chapter
  • First Online:

Abstract

This chapter reviews the most commonly used topical pharmacokinetic techniques. Numerous other techniques (e.g., the non-invasive spectroscopic techniques like confocal, fluorescence techniques as well as the NMR technique) are not described here as they will have one or more of the following characteristics: very specific for a drug or disease, possibly impractical, possibly not quantitative, possibly lacking sensitivity or possibly at a too early stage of development. They cannot, therefore, be applicable as versatile techniques for studying topical pharmacokinetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Surber C, Schwarb FP, Smith EW. Tape-stripping technique. In: Bronaugh RL, Maibach HI, editors. Percutaneous absorption, vol. 97. 3rd ed. New York: Marcel Dekker; 1999. p. 395–409.

    Google Scholar 

  2. L. A. Nylander-French. Understanding dermal exposure - a critical step in exposure assessment. NIH, Research Brief. 2008;166.

    Google Scholar 

  3. Lademann J, Jacobi U, Surber C, Weigmann H-J, Fluhr JW. The tape stripping procedure—evaluation of some critical parameters. Eur J Pharm Biopharm. 2009;72(2):317–23.

    Article  CAS  PubMed  Google Scholar 

  4. Shah V. Topical drug products - regulatory requirements (USA). (2009). [Online]. Available from: https://www.ipapharma.org/pdf/speaker/1.02%20Vinod%20Shah%20topical.pdf

  5. Dotzel MM. Draft guidance for industry on topical dermatological drug product NDAs and ANDAs-in vivo bioavailability, bioequivalence, in vitro release and associated studies; withdrawal. U Fed Regist. 2002;67(96):35122–3.

    Google Scholar 

  6. Garcia OP, Hansen SH, Shah VP, Sonne J, Benfeldt E. Are marketed topical metronidazole creams bioequivalent? Evaluation by in vivo microdialysis sampling and tape stripping methodology. Skin Pharmacol Physiol. 2011;24(1):44–53.

    Article  Google Scholar 

  7. Incecayir T, Agabeyoglu I, Derici U, Sindel S. Assessment of topical bioequivalence using dermal microdialysis and tape stripping methods. Pharm Res. 2011;28(9):2165–75.

    Article  CAS  PubMed  Google Scholar 

  8. Schaefer H, Stüttgen G, Zesch A, Schalla W, Gazith J. Quantitative determination of percutaneous absorption of radiolabeled drugs in vitro and in vivo by human skin. Curr Probl Dermatol. 1978;7:80–94.

    Article  CAS  PubMed  Google Scholar 

  9. Surber C, Smith EW, Schwartz FP, Maibach HI. Drug concentration in skin. In: Bronaugh RL, Maibach HI, editors. Percutaneous absorption: drugs, cosmetics, mechanisms, methodology, vol. 97. New York: Marcel Dekker; 1999. p. 347–74.

    Google Scholar 

  10. Fitzgerald GG. Pharmacokinetics and drug metabolism in animal studies (ADME, protein binding, mass balance, animal models). In: Yacobi A, Skelly JP, Shad VP, Benet LZ, editors. Integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. New York: Plenum Press; 1993. p. 23–31.

    Chapter  Google Scholar 

  11. Kiistala U. Dermal-epidermal separation. II. External factors in suction blister formation with special reference to the effect of temperature. Ann Clin Res. 1972;4(4):236–46.

    CAS  PubMed  Google Scholar 

  12. Kiistala U. Dermal-epidermal separation. I. The influence of age, sex and body region on suction blister formation in human skin. Ann Clin Res. 1972;4(1):10–22.

    CAS  PubMed  Google Scholar 

  13. Schreiner A, Hellum KB, Digranes A, Bergman I. Transfer of penicillin G and ampicillin into human skin blisters induced by suction. Scand J Infect Dis Suppl. 1978;14:233–7.

    CAS  Google Scholar 

  14. Treffel P, Makki S, Faivre B, Humbert P, Blanc D, Agache P. Citropten and bergapten suction blister fluid concentrations after solar product application in man. Skin Pharmacol. 1991;4(2):100–8.

    Article  CAS  PubMed  Google Scholar 

  15. Huuskonen H, Koulu L, Wilén G. Quantitative determination of methoxsalen in human serum, suction blister fluid and epidermis by gas chromatography mass spectrometry. Photodermatol. 1984;1(3):137–40.

    CAS  PubMed  Google Scholar 

  16. Averbeck D, et al. Suction blister fluid: its use for pharmacodynamic and toxicological studies of drugs and metabolites in vivo in human skin after topic or systemic administration. In: Maibach HI, Lowe NJ, editors. Models in Dermatology. New York: Karger AG; 1989. p. 5–9.

    Google Scholar 

  17. Agren MS. Percutaneous absorption of zinc from zinc oxide applied topically to intact skin in man. Dermatologica. 1990;180(1):36–9.

    Article  CAS  PubMed  Google Scholar 

  18. Surber C, Wilhelm KP, Bermann D, Maibach HI. In vivo skin penetration of acitretin in volunteers using three sampling techniques. Pharm Res. 1993;10(9):1291–4.

    Article  CAS  PubMed  Google Scholar 

  19. Thylen P, Lundahl J, Fernvik E, Gronneberg R, Hallden G, Jacobson SH. Impaired monocyte CD11b expression in interstitial inflammation in hemodialysis patients. Kidney Int. 2000;57(5):2099–106.

    Article  CAS  PubMed  Google Scholar 

  20. Hui X, et al. Enhanced human nail drug delivery: nail inner drug content assayed by new unique method. J Pharm Sci. 2002;91(1):189–95.

    Article  CAS  PubMed  Google Scholar 

  21. Hui X, et al. In vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate. J Pharm Sci. 2007;96(10):2622–31.

    Article  CAS  PubMed  Google Scholar 

  22. Hadgraft J, et al. Investigations on the percutaneous absorption of the antidepressant rolipram in vitro and in vivo. Pharm Res. 1990;7(12):1307–12.

    Article  CAS  PubMed  Google Scholar 

  23. Benfeldt E. In vivo microdialysis for the investigation of drug levels in the dermis and the effect of barrier perturbation on cutaneous drug penetration. Studies in hairless rats and human subjects. Acta Derm Venereol Suppl (Stockh). 1999;206:1–59.

    CAS  Google Scholar 

  24. Holmgaard R, Nielsen JB, Benfeldt E. Microdialysis sampling for investigations of bioavailability and bioequivalence of topically administered drugs: current state and future perspectives. Skin Pharmacol Physiol. 2010;23(5):225–43.

    Article  CAS  PubMed  Google Scholar 

  25. Benfeldt E, Serup J. Effect of barrier perturbation on cutaneous penetration of salicylic acid in hairless rats: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Arch Dermatol Res. 1999;291(9):517–26.

    Article  CAS  PubMed  Google Scholar 

  26. Stahle L, Segersvard S, Ungerstedt U. A comparison between three methods for estimation of extracellular concentrations of exogenous and endogenous compounds by microdialysis. J Pharmacol Methods. 1991;25(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  27. Muller M. In vitro recovery vs. in vivo recovery. Accessed 05 Nov 2002.

    Google Scholar 

  28. Simonsen L. Microdialysis in skin penetration studies. Presented at the Skin Forum UK. Accessed 12 Jul 2002.

    Google Scholar 

  29. Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51(4):702–47.

    CAS  PubMed  Google Scholar 

  30. Siddiqui O, Roberts MS, Polack AE. Percutaneous absorption of steroids: relative contributions of epidermal penetration and dermal clearance. J Pharmacokinet Biopharm. 1989;17(4):405–24.

    Article  CAS  PubMed  Google Scholar 

  31. Imanidis G, Song WQ, Lee PH, Su MH, Kern ER, Higuchi WI. Estimation of skin target site acyclovir concentrations following controlled (trans)dermal drug delivery in topical and systemic treatment of cutaneous HSV-1 infections in hairless mice. Pharm Res. 1994;11(7):1035–41.

    Article  CAS  PubMed  Google Scholar 

  32. Anissimov YG. Mathematical models for skin toxicology. Expert Opin Drug Metab Toxicol. 2014;10(4):551–60.

    Article  CAS  PubMed  Google Scholar 

  33. Cordero JA, Camacho M, Obach R, Domenech J, Vila L. In vitro based index of topical anti-inflammatory activity to compare a series of NSAIDs. Eur J Pharm Biopharm. 2001;51(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  34. Trottet L. Indirect measurement of skin concentration. In: Topical pharmacokinetics for a rational and effective topical drug development process, Ph.D. Thesis, University of Greenwich. 2004.

    Google Scholar 

  35. Bunge AL, Cleek RL. A new method for estimating dermal absorption from chemical exposure: 2. Effect of molecular weight and octanol-water partitioning. Pharm Res. 1995;12(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  36. Ibrahim R, Kasting GB. Improved method for determining partition and diffusion coefficients in human dermis. J Pharm Sci. 2010;99(12):4928–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Trottet .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Trottet, L., Maibach, H. (2017). Assessing Drug Concentration in Skin: Direct and Indirect Methods. In: Dermal Drug Selection and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-59504-7_5

Download citation

Publish with us

Policies and ethics