Modelling Bioaccumulation in Aquatic Organisms and in Mammals

  • Artur Radomyski
  • Elisa Giubilato
  • Nicoleta Alina Suciu
  • Andrea Critto
  • Philippe CiffroyEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 57)


The assessment of bioaccumulation processes plays a significant role in the evaluation of chemical risks. The awareness of long-lasting and often irreversible effects of bioaccumulative chemicals on ecological and human targets encouraged the inclusion of bioaccumulation assessment in many national and international legislative frameworks. At the same time, various experimental and modelling approaches have been developed to estimate bioaccumulation metrics such as the bioaccumulation factor (BAF) or the biomagnification factor (BMF). In this chapter, the main processes governing bioaccumulation phenomena in selected aquatic organisms (phytoplankton, invertebrate and fish) and in terrestrial mammals are described, in particular those implemented in the corresponding models available in MERLIN-Expo tool for exposure assessment. The main objective is to describe the development of bioaccumulation models for organic and inorganic contaminants which takes into account recent progresses and which satisfactorily describes bioaccumulation of contaminants along food webs including phytoplankton, invertebrate and fish species for surface waters, and mammals for terrestrial systems, and also allowing dynamic and stochastic assessment according to MERLIN-Expo modelling features. The coupling of different aquatic biota models allows to recreate aquatic food web of different dimensions and complexity, while the coupling of terrestrial mammal model with plant models available in MERLIN-Expo permits to simulate the transfer of contaminants along simplified terrestrial food chains.


Aquatic food web Bioaccumulation Biomagnification Exposure model Mammal 


  1. 1.
    EEA (2011) Hazardous substances in Europe’s fresh and marine waters. EEA Technical report No 8/2011. European Environmental Agency, CopenhagenGoogle Scholar
  2. 2.
    EFSA (2014) A systematic procedure for the identification of emerging chemical risks in the food and feed chain. European Food Safety Agency, EFSA supporting publication 2014: EN-547, 40 ppGoogle Scholar
  3. 3.
    Arnot JA, Quinn CL (2015) Development and evaluation of a database of dietary bioaccumulation test data for organic chemicals in fish. Environ Sci Technol 49:4783–4796CrossRefGoogle Scholar
  4. 4.
    US EPA (2012) US EPA Ecological Risk Assessment – Glossary of Terms. Available at (visited in July 2015)
  5. 5.
    Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14(4):257–297CrossRefGoogle Scholar
  6. 6.
    van Leeuwen CJ, Vermeire TG (eds) (2007) Risk assessment of chemicals: an introduction. Springer, The NetherlandsGoogle Scholar
  7. 7.
    Müller M, Nendza M (2007) Literature study: effects of molecular size and lipid solubility on bioaccumulation potential. Fraunhofer Institute for Molecular Biology and Applied Ecology, GermanyGoogle Scholar
  8. 8.
    Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, HobokenGoogle Scholar
  9. 9.
    McLachlan MS, Czub G, Macleod M, Arnot JA (2011) Bioaccumulation of organic contaminants in humans: a multimedia perspective and the importance of biotransformation. Environ Sci Technol 45:197–202CrossRefGoogle Scholar
  10. 10.
    Stockholm Convention on Persistent Organic Pollutants, as amended in 2009Google Scholar
  11. 11.
    Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal (1989)Google Scholar
  12. 12.
    EC (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/ECGoogle Scholar
  13. 13.
    ECHA (2014a) Guidance on Information Requirements and Chemical Safety Assessment Chapter R.7c: Endpoint specific guidance, Version 2.0, November 2014, European Chemical AgencyGoogle Scholar
  14. 14.
    EU (2012) Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal productsGoogle Scholar
  15. 15.
    ECHA (2014b) Guidance on the Biocidal Products Regulation, Volume IV: Environment, Part A: Information Requirements, Version 1.1, November 2014, European Chemical AgencyGoogle Scholar
  16. 16.
    EC (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309/1, 24.11.2009, pp 1–50Google Scholar
  17. 17.
    EFSA PPR Panel (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Panel on Plant Protection Products and their Residues, European Food Safety Authority. EFSA J 11(7):3290Google Scholar
  18. 18.
    EC (2011) Common Implementation Strategy for the Water Framework Directive (2000/60/EC): Guidance Document No. 27. Technical Guidance for Deriving Environmental Quality Standards. European CommunitiesGoogle Scholar
  19. 19.
    Schäfer S, Buchmeier G, Claus E, Duester L, Heininger P, Körner A, Mayer P, Paschke A, Rauert C, Reifferscheid G, Rüdel H, Schlechtriem C, Schröter-Kermani C, Schudoma D, Smedes F, Steffen D, Vietoris F (2015) Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment. Environ Sci Eur 27(5)Google Scholar
  20. 20.
    Mackay D, Arnot JA, Gobas FA, Powell DE (2013) Mathematical relationships between metrics of chemical bioaccumulation in fish. Environ Toxicol Chem 32(7):1459–1466Google Scholar
  21. 21.
    OECD (2012) Test No. 305: Bioaccumulation in Fish: Aqueous and Dietary Exposure, OECD Guidelines for the Testing of Chemicals, Section 3. OECD Publishing, Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  22. 22.
    OECD (2008) Test No. 315: Bioaccumulation in Sediment-dwelling Benthic Oligochaetes, OECD Guidelines for the Testing of Chemicals, Section 3. OECD Publishing, Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  23. 23.
    OECD (2010) Test No. 317: Bioaccumulation in Terrestrial Oligochaetes, OECD Guidelines for the Testing of Chemicals, Section 3. OECD Publishing, Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  24. 24.
    Nichols J, Gobas F, Macleod M, Borga K, Leonards P, Papa E, Laue H, Arnot J (2015) Summary of Cefic-LRI Sponsored Workshop: Recent Scientific Development in Bioaccumulation Research. Workshop report prepared for Cefic-LRI, February 2015Google Scholar
  25. 25.
    Veith GD, de Foe DL, Bergstaedt BV (1979) Measuring and estimating the bioconcentration factor of chemicals in fish. J Fish Res Board Can 36:1040–1048CrossRefGoogle Scholar
  26. 26.
    Mackay D, Paterson S (1982) Fugacity revisited. Environ Sci Technol 16:654A–660AGoogle Scholar
  27. 27.
    Meylan WM, Howard PH, Boethling RS, Aronson D, Printup H, Gouchie S (1999) Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ Toxicol Chem 18:664–672CrossRefGoogle Scholar
  28. 28.
    Dimitrov S, Dimitrova N, Walker J, Veith G, Mekenyan O (2002) Predicting bioconcentration factors of highly hydrophobic chemicals. Effects of molecular size. Pure Appl Chem 74:1823–1830CrossRefGoogle Scholar
  29. 29.
    Schüürmann G, Ebert R-U, Nendza M, Dearden JC, Paschke A, Kühne R (2007) Predicting fate-related physicochemical properties. In: van Leeuwen CJ, Vermeire TG (eds) Risk assessment of chemicals: an introduction, 2nd edn. Springer, The NetherlandsGoogle Scholar
  30. 30.
    Bintein S, Devillers J, Karcher W (1993) Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient. SAR QSAR Environ Res 1:29–39CrossRefGoogle Scholar
  31. 31.
    Gobas FAPC, Zhang X, Wells R (1993) Gastrointestinal magnification: the mechanism of biomagnification and food chain accumulation of organic chemicals. Environ Sci Technol 27:2855–2863CrossRefGoogle Scholar
  32. 32.
    Hauck M, Hendriks HWM, Huijbregts MAJ, Ragas AMJ, van de Meent D, Hendriks AJ (2011) Parameter uncertainty in modeling bioaccumulation factors of fish. Environ Toxicol Chem 30:403–412CrossRefGoogle Scholar
  33. 33.
    Hendriks AJ, Van der Linde A, Cornelissen G, Sijm DTHM (2001) The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol–water partition ratio and species weight. Environ Toxicol Chem 20(7):1399–1420CrossRefGoogle Scholar
  34. 34.
    Korsman JC, Schipper AM, de Vos MG, van den Heuvel-Greve MJ, Vethaak AD, de Voogt P, Hendriks AJ (2015) Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine–marine food chains. Chemosphere 138:33–39CrossRefGoogle Scholar
  35. 35.
    Hendriks AJ (1995) Modelling non-equilibrium concentrations of microcontaminants in organisms: comparative kinetics as a function of species size and octanol-water partitioning. Chemosphere 30:265–292CrossRefGoogle Scholar
  36. 36.
    Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391CrossRefGoogle Scholar
  37. 37.
    Arnot JA, Gobas FAPC (2004) A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23(10):2343–2355CrossRefGoogle Scholar
  38. 38.
    Barber MC, Suárez LA, Lassiter RR (1991) Modelling bioaccumulation of organic pollutants in fish with an application to PCBs in Lake Ontario salmonids. Can J Fish Aquat Sci 48:318–337CrossRefGoogle Scholar
  39. 39.
    Campfens J, Mackay D (1997) Fugacity-based model of PCB bioaccumulation in complex aquatic food webs. Environ Sci Technol 31(2):577–583CrossRefGoogle Scholar
  40. 40.
    Ardestani MM, van Straalen NM, van Gestel CAM (2014) Uptake and elimination kinetics of metals in soil invertebrates: a review. Environ Pollut 193:277–295CrossRefGoogle Scholar
  41. 41.
    Kelly BC, Gobas FA (2003) An Arctic terrestrial food chain bioaccumulation model for persistent organic pollutants. Environ Sci Technol 37:2966–2974CrossRefGoogle Scholar
  42. 42.
    Papa E, van der Wal L, Arnot JA, Gramatica P (2014) Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis. Sci Total Environ 470–471:1040–1046CrossRefGoogle Scholar
  43. 43.
    Webster EM, Ellis DA (2012) Estimating chemical biotransformation rates from food web concentrations. Chemosphere 87:404–412CrossRefGoogle Scholar
  44. 44.
    Undeman E, McLachlan MS (2011) Assessing model uncertainty of bioaccumulation models by combining chemical space visualization with a process-based diagnostic approach. Environ Sci Technol 45:8429–8436CrossRefGoogle Scholar
  45. 45.
    Arnot JA, Mackay D, Parkerton TF, Zaleski RT, Warren CS (2010) Multimedia modeling of human exposure to chemical substances: the roles of food web biomagnification and biotransformation. Environ Toxicol Chem 29:45–55CrossRefGoogle Scholar
  46. 46.
    Lim D-H, Lastoskie CM (2011) A dynamic multimedia environmental and bioaccumulation model for brominated flame retardants in lake Huron and lake Erie, USA. Environ Toxicol Chem 30(5):1018–1025CrossRefGoogle Scholar
  47. 47.
    MacLeod M, Scheringer M, McKone TE, Hungerbuhler K (2010) The state of multimedia mass-balance modeling in environmental science and decision-making. Environ Sci Technol 44:8360–8364. doi: 10.1021/es100968w CrossRefGoogle Scholar
  48. 48.
    Frouin H, Dangerfield N, Macdonald RW, Galbraith M, Crewe N, Shaw P, Mackas D, Ross PS (2013) Partitioning and bioaccumulation of PCBs and PBDEs in marine plankton from the Strait of Georgia, British Columbia, Canada. Prog Oceanogr 115:65–75CrossRefGoogle Scholar
  49. 49.
    Barber MC (2008) Dietary uptake models used for modeling the bioaccumulation of organic contaminants in fish. Environ Toxicol Chem 27(4):755–777CrossRefGoogle Scholar
  50. 50.
    Gobas FA, Muir DC, Mackay D (1988) Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish. Chemosphere 17(5):943–962CrossRefGoogle Scholar
  51. 51.
    Flynn GL, Yalkowsky SH (1972) Correlation and prediction of mass transport across membranes I: Influence of alkyl chain length on flux-determining properties of barrier and diffusant. J Pharm Sci 61(6):838–852CrossRefGoogle Scholar
  52. 52.
    Gobas FAPC, Opperhuizen A, Hutzinger O (1986) Bioconcentration of hydrophobic chemicals in fish: relationship with membrane permeation. Environ Toxicol Chem 5(7):637–646CrossRefGoogle Scholar
  53. 53.
    Hendriks AJ (2007) The power of size: a meta-analysis reveals consistency of allometric regressions. Ecol Model 205(1–2):196–208CrossRefGoogle Scholar
  54. 54.
    Thomann RV, Connolly JP, Parkerton TF (1992) An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem 11(5):615–629CrossRefGoogle Scholar
  55. 55.
    Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149CrossRefGoogle Scholar
  56. 56.
    Arnot JA, Meylan W, Tunkel J, Howard PH, MacKay D, Bonnell M, Boethling RS (2009) A quantitative structure–activity relationship for predicting metabolic biotransformation rates for organic chemicals in fish. Environ Toxicol Chem 28(6):1168–1177CrossRefGoogle Scholar
  57. 57.
    McGeer JC, Brix KV, Skeaff JM, Deforest DK, Brigham SI, Adams WJ, Green A (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22(5):1017–1037CrossRefGoogle Scholar
  58. 58.
    Chapman PM, Allen HE, Godtfredsen K, Z’Graggen MN (1996) Policy analysis, peer reviewed: evaluation of bioaccumulation factors in regulating metals. Environ Sci Technol 30(10):448A–452ACrossRefGoogle Scholar
  59. 59.
    Hamilton SJ, Mehrle PM (1986) Metallothionein in fish: review of its importance in assessing stress from metal contaminants. Trans Am Fish Soc 115(4):596–609CrossRefGoogle Scholar
  60. 60.
    DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84(2):236–246CrossRefGoogle Scholar
  61. 61.
    Phillips DJ, Rainbow PS (1989) Strategies of trace metal sequestration in aquatic organisms. Marine Environ Res 28(1–4):207–210CrossRefGoogle Scholar
  62. 62.
    Tanaka T, Ciffroy P, Stenberg K, Capri E (2010) Regression approaches to derive generic and fish group-specific probability density functions of bioconcentration factors for metals. Environ Toxicol Chem 29(11):2417–2425CrossRefGoogle Scholar
  63. 63.
    O’Connor IA, Huijbregts MA, Ragas AM, Hendriks AJ (2013) Predicting the oral uptake efficiency of chemicals in mammals: combining the hydrophilic and lipophilic range. Toxicol Appl Pharmacol 266(1):150–156CrossRefGoogle Scholar
  64. 64.
    O’Connor IA, Veltman K, Huijbregts MA, Ragas AM, Russel FG, Hendriks AJ (2014) Including carrier-mediated transport in oral uptake prediction of nutrients and pharmaceuticals in humans. Environ Toxicol Pharmacol 38(3):938–947CrossRefGoogle Scholar
  65. 65.
    Abraham MH (1993) Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev 22(2):73–83CrossRefGoogle Scholar
  66. 66.
    Peyret T, Poulin P, Krishnan K (2010) A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals. Toxicol Appl Pharmacol 249(3):197–207CrossRefGoogle Scholar
  67. 67.
    Lindstedt SL, Schaeffer PJ (2002) Use of allometry in predicting anatomical and physiological parameters of mammals. Lab Anim 36(1):1–19CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Artur Radomyski
    • 1
  • Elisa Giubilato
    • 1
  • Nicoleta Alina Suciu
    • 2
  • Andrea Critto
    • 1
  • Philippe Ciffroy
    • 3
    Email author
  1. 1.Department of Environmental Sciences, Informatics and StatisticsUniversity Ca’ Foscari VeniceMestre – VeneziaItaly
  2. 2.Università Cattolica del Sacro CuorePiacenzaItaly
  3. 3.Electricité de France (EDF) R&D, National Hydraulic and Environment LaboratoryChatouFrance

Personalised recommendations