Advertisement

Modelling the Fate and Transfer of Substances Discharged into Soil Unsaturated Zones and Water Tables

  • Mohamed Krimissa
  • Cécile Couégnas
  • Philippe Bataillard
  • Valérie Guérin
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 57)

Abstract

This chapter highlights the complexity of water and chemical phenomena that control the behaviour of contaminants in the unsaturated zone (UZ). Numerous mechanisms are involved in fixing these elements in soils, and many are not fully understood. This area of study is characterised by their hierarchy, or the predominance of one mechanism over another, depending on the bio-physico-chemical conditions of the environment. Understanding this hierarchy requires site analysis and measurements which currently are not always carried out.

Nevertheless, estimating the potential risk of a moderately contaminated site in the medium and long term, determining its future use, predicting groundwater quality and optimally managing contaminated excavated material (waste and polluted soil) all require a good understanding of pollutant behaviour in time and space.

Keywords

Reactivity of chemicals Unsaturated zone Water flow 

References

  1. 1.
    Richards LA (1931) Capillary conduction of liquids through porous medium. Physics 1:318–333CrossRefGoogle Scholar
  2. 2.
    Turc L (1951) Nouvelles formules pour le bilan de l’eau en fonction des valeurs moyennes annuelles des précipitations et de la température. Comptes rendus de l’Académie Scie Paris 233:633–635Google Scholar
  3. 3.
    Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  4. 4.
    Primault B (1981) Extension de la validité de la formule suisse de calcul de l’évapotranspiration, Rapport de travail de l’Institut Suisse de Météorologie n° 103Google Scholar
  5. 5.
    Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A Math Phys Eng Sci 193(1032):120–145CrossRefGoogle Scholar
  6. 6.
    Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–224Google Scholar
  7. 7.
    Darcy H (1856) Les fontaines publiques de la ville de Dijon. Dalmont, ParisGoogle Scholar
  8. 8.
    Amraoui N (1996) Etude de l’infiltration dans des sols fins non saturées, thèse de l’INPLGoogle Scholar
  9. 9.
    Gardner WR (1958) Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85:228–232CrossRefGoogle Scholar
  10. 10.
    Gardner WR (1970) Measurement of unsaturated conductivity and diffusivity by infiltration through an impeding layer. Soil Sci 109:149–153CrossRefGoogle Scholar
  11. 11.
    Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Paper No. 3. Colorado State University, Fort Collins, COGoogle Scholar
  12. 12.
    Visser WC (1966) Progress in the knowledge about the effect of soil moisture content on plant production. Inst. Land Water Management, Wageningen, Netherlands, Tech. Bull. 45Google Scholar
  13. 13.
    Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Am J 44:892–898CrossRefGoogle Scholar
  14. 14.
    Campbell GS (1974) A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci 117:311–314CrossRefGoogle Scholar
  15. 15.
    Jarvis NJ (1994) The MACRO model version 3.1 – Technical description and sample simulations. Reports and dissertations no. 19, Department of Soil Science, Swedish University of Agricultural Sciences, Uppsala, Sweden, 51 ppGoogle Scholar
  16. 16.
    Alaoui A, Eugster W (2004) Dual-porosity modelling of the groundwater recharge: testing a quick calibration using in situ moisture measurements, Areuse River delta, Switzerland. Hydrogeol J 12:464–475CrossRefGoogle Scholar
  17. 17.
    Blanc Ph, Burnol A, Guyonnet D (2004) Atténuation naturelle des métaux de la liste de substances prioritaires dans la zone non saturée, guide de recommandations, rapport final, BRGM/RP-53096-FR, 44 ppGoogle Scholar
  18. 18.
    Calvet R (2003) Le Sol: propriétés et fonctions – Tome 2: Phénomènes physiques et chimiques – Applications agronomiques et environnementales, Dunod – Editions France Agricole, 511 ppGoogle Scholar
  19. 19.
    Sposito G (1994) Chemical equilibria and kinetics in soils. Oxford University Press, 268 ppGoogle Scholar
  20. 20.
    Sigg L, Behra P, Stumm W (2000) Chimie des milieux aquatiques. Chimie des eaux naturelles et des interfaces dans l’environnement, 3e éd. Dunod, Paris, 567 ppGoogle Scholar
  21. 21.
    Lions J (2004) Etude hydrogéochimique de la mobilité de polluants inorganiques dans des sédiments de curage mis en dépôt expérimentations, étude in situ et modélisations, Thèse de l’Ecole des Mines de Paris, 248 ppGoogle Scholar
  22. 22.
    Thiéry D (2010) Groundwater flow modeling in porous media using MARTHE. In: Tanguy JM (ed) “Modeling Software Volume 5, Chapter 4, pp. 45–60 - Environmental Hydraulics Series”. Editions Wiley/ISTE London. ISBN: 978-1-84821-157-5Google Scholar
  23. 23.
    ACRi (1994) PORFLOW: a software tool for multiphase fluid flow, heat and mass transport in fractured porous media - validation, version 2.50. Analytic & Computational Research, Inc, Los Angeles, CAGoogle Scholar
  24. 24.
    Šimůnek J, van Genuchten MT, Šejna M (2005) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, in Software Series 1, H. Version 3.0, Editor. 2005, Department of Environmental Sciences, University of California Riverside, Riverside, California, USAGoogle Scholar
  25. 25.
    Šimůnek J, van Genuchten MT, Šejna M (2006) The HYDRUS software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, in Technical Manual, V. 1.0, Editor. 2006, PC Progress, Prague, Czech Republic, p 241Google Scholar
  26. 26.
    Diersch HJG (2009) Feflow: finite element subsurface flow & transport simulation system, in User Manuel. 2009, DHI_Wasy Software, p 292Google Scholar
  27. 27.
    Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 pp. Available only at https://pubs.usgs.gov/tm/06/a43/
  28. 28.
    Van Der Lee J, De Windt L, Lagneau V, Goblet P (2003) Module-oriented modeling of reactive transport with HYTEC. Comput Geosci, Elsevier 29:265–275CrossRefGoogle Scholar
  29. 29.
    Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey modular ground-water model—the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6- A16Google Scholar
  30. 30.
    Kenneth LK (1997) Guide to the revised heat and solute transport simulator: HST3D - Version 2, W.-R.I.R. 97-4157, Editor. 1997, US. Geological Survey, Denver, Colorado, p 158Google Scholar
  31. 31.
    Krupka KM, Kaplan DI, Whelan G, Serne RJ, Mattigod SV (1999) Understanding variation in partition coefficient, Kd, values. Volume I: the Kd model, methods of measurement, and application of chemical reaction codes. Rapport EPA 402-R-99-004AGoogle Scholar
  32. 32.
    Zhu C, Anderson G (2002) Environmental applications of geochemical modelling. Cambridge University Press, 284 ppGoogle Scholar
  33. 33.
    Burnol A, Chartier R, Guyonnet D, Baranger P, Amraoui N, Kervevan C (2003) Contribution au programme TRANSPOL: Cas Réel n°2- Migration d’arsenic issu d’un site minier. Rapport final, BRGM/RP-52154-FRGoogle Scholar
  34. 34.
    Bataillard Ph (2002) Evolution de la spéciation du plomb et du cadmium dans les sols. Thèse de doctorat. Ecole Nationale Supérieure du Génie Rural, des Eaux et des Forêts, ParisGoogle Scholar
  35. 35.
    Panfili F (2004) Etude de l’évolution de la spéciation du zinc dans la phase solide d’un sédiment de curage contaminé, induit par phytostabilisation. Thèse de doctorat, Université de Provence Aix-Marseille IGoogle Scholar
  36. 36.
    Rollin C, Quiot F (2006) Eléments traces métalliques – Guide méthodologique – Recommandations pour la modélisation des transferts des éléments traces métalliques dans les sols et les eaux souterraines. Rapport d’étude n° INERIS-DRC-06-66246/DESP-R01aGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mohamed Krimissa
    • 1
  • Cécile Couégnas
    • 1
  • Philippe Bataillard
    • 2
  • Valérie Guérin
    • 2
  1. 1.EDF R&DChatouFrance
  2. 2.BRGMOrléansFrance

Personalised recommendations