Skip to main content

Modelling the Fate of Chemicals in the Atmosphere

  • Chapter
  • First Online:
Modelling the Fate of Chemicals in the Environment and the Human Body

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 57))

  • 842 Accesses

Abstract

Atmosphere is an important component of the whole ecosystem because it directly interacts with all the other media, i.e. soil, surface waters, vegetation and biota. This chapter describes the processes that should be considered in models simulating the fate of chemicals in the atmosphere. The first section describes model approaches able to simulate the long-range transport of chemicals in the atmosphere. The second section describes the partition of chemicals between gaseous and particulate phases in the atmosphere. Two approaches, respectively, based on liquid vapour pressure and octanol-air partition coefficient are presented. The third section describes chemical reactions occurring in the atmosphere, driven by photolysis and reactions with photooxidants like the hydroxyl radical OH. The forth section describes dry deposition of both gaseous and particulate chemicals on the earth surface. Dry deposition is driven by aerodynamic, quasi-laminar sublayer and canopy resistances. The calculation of these latter is presented here in detail. The fifth section describes wet deposition of both gaseous and particulate chemicals on the earth surface, driven by rainout (in-cloud) and washout (below-cloud) scavenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agency for Toxic Substances and Disease Registry (2000) Toxicological profile for polychlorinated biphenyls (PCBs). U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  2. Arisawa K, Takeda H, Mikasa H (2005) Background exposure to PCDDs/PCDFs/PCBs and its potential health effects: a review of epidemiologic studies. J Med Investig 52(1–2):10–21

    Article  Google Scholar 

  3. Brody JG, Moysich KB, Humblet O, Attfield KR, Beehler GP, Rudel RA (2007) Environmental pollutants and breast cancer. Cancer 109(S12):2667–2711

    Article  CAS  Google Scholar 

  4. Winneke G, Walkowiak J, Lilienthal H (2002) PCB-induced neurodevelopmental toxicity in human infants and its potential mediation by endocrine dysfunction. Toxicology 181:161–165

    Article  Google Scholar 

  5. Dalton TP, Kerzee JK, Wang B, Miller M, Dieter MZ, Lorenz JN, Puga PA (2001) Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovasc Toxicol 1(4):285–298

    Article  CAS  Google Scholar 

  6. Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whyatt RW (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118(6):e1845–e1859

    Article  Google Scholar 

  7. Wang SL, Lin CY, Guo YL, Lin LY, Chou WL, Chang LW (2004) Infant exposure to polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls (PCDD/Fs, PCBs) – correlation between prenatal and postnatal exposure. Chemosphere 54(10):1459–1473

    Article  CAS  Google Scholar 

  8. Wania F, Mackay D (1996) Peer reviewed: tracking the distribution of persistent organic pollutants. Environ Sci Technol 30(9):390A–396A

    Article  CAS  Google Scholar 

  9. Dalla Valle M, Dachs J, Sweetman AJ, Jones KC (2004) Maximum reservoir capacity of vegetation for persistent organic pollutants: implications for global cycling. Glob Biogeochem Cycles 18:GB4032

    Article  Google Scholar 

  10. Sportisse B (2009) Fundamentals in air pollution: from processes to modelling. Springer, Berlin

    Google Scholar 

  11. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  12. Boussinesq J (1877) Essai sur la théorie des eaux courantes. Imprimerie nationale, Paris

    Google Scholar 

  13. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound-Layer Meteorol 17(2):187–202

    Article  Google Scholar 

  14. Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound-Layer Meteorol 37(1–2):129–148

    Article  Google Scholar 

  15. Atkinson R (1996) Atmospheric chemistry of PCBs, PCDDs and PCDFs. Environ Sci Technol 6:53–72

    CAS  Google Scholar 

  16. Junge CE (1975) Transport mechanisms for pesticides in the atmosphere. Pure Appl Chem 42:95–104

    Article  CAS  Google Scholar 

  17. Junge CE (1977) Basic considerations about trace constituents in the atmosphere as related to the fate of global pollutants. In: Suffet IH (ed) Fate of pollutants in the air and water environments, Part I. Wiley, New York, pp. 7–25

    Google Scholar 

  18. Pankow JF (1987) Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos Environ 21(11):2275–2283

    Article  CAS  Google Scholar 

  19. Finizio A, Mackay D, Bidleman T, Harner T (1997) Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos Environ 31(15):2289–2296

    Article  CAS  Google Scholar 

  20. Harner T, Bidleman TF (1998) Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environ Sci Technol 32(10):1494–1502

    Article  CAS  Google Scholar 

  21. Hung H, Blanchard P, Poole G, Thibert B, Chiu CH (2002) Measurement of particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in arctic air at alert, Nunavut, Canada. Atmos Environ 36(6):1041–1050

    Article  CAS  Google Scholar 

  22. Kaupp H, McLachlan MS (1999) Gas/particle partitioning of PCDD/Fs, PCBs, PCNs and PAHs. Chemosphere 38(14):3411–3421

    Article  CAS  Google Scholar 

  23. Lee RG, Jones KC (1999) Gas-particle partitioning of atmospheric PCDD/Fs: measurements and observations on modeling. Environ Sci Technol 33(20):3596–3604

    Article  CAS  Google Scholar 

  24. Salthammer T, Schripp T (2015) Application of the Junge- and Pankow-equation for estimating indoor gas/particle distribution and exposure to SVOCs. Atmos Environ 106:467–476

    Article  CAS  Google Scholar 

  25. Xiao H, Wania F (2003) Is vapor pressure or the octanol–air partition coefficient a better descriptor of the partitioning between gas phase and organic matter? Atmos Environ 37(20):2867–2878

    Article  CAS  Google Scholar 

  26. Lohmann R, Lammel G (2004) Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modeling. Environ Sci Technol 38(14):3793–3803

    Article  CAS  Google Scholar 

  27. Götz CW, Scheringer M, MacLeod M, Roth CM, Hungerbühler K (2007) Alternative approaches for modeling gas-particle partitioning of semivolatile organic chemicals: model development and comparison. Environ Sci Technol 41(4):1272–1278

    Article  Google Scholar 

  28. Yttri KE, Aas W, Bjerke A, Cape JN, Cavalli F, Ceburnis D, Dye C, Emblico L, Facchini MC, Forster C, Hanssen JE, Hansson HC, Jennings SG, Maenhaut W, Putaud JP, Tørseth K (2007) Elemental and organic carbon in PM10: a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP. Atmos Chem Phys 7:5711–5725

    Article  CAS  Google Scholar 

  29. Turpin BJ, Lim H-J (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35(1):602–610

    Article  CAS  Google Scholar 

  30. Atkinson R (2007) Gas-phase tropospheric chemistry of organic compounds: a review. Atmos Environ 41:200–240

    Article  Google Scholar 

  31. Atkinson R (1988) Estimation of gas-phase hydroxyl radical rate constants for organic chemicals. Environ Toxicol Chem 7(6):435–442

    Article  CAS  Google Scholar 

  32. Chen J, Quan X, Yan Y, Yang F, Peijnenburg W (2001) Quantitative structure-property relationship studies on the direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aerosol. Chemosphere 42:263–270

    Article  CAS  Google Scholar 

  33. Prinn RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Salameh P, O’Doherty S, Wang RHJ, Porter L, Miller BR (2001) Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 292:1882

    Article  CAS  Google Scholar 

  34. Prinn RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Reimann S, Salameh P, O’Doherty S, Wang RHJ, Porter L, Miller BR, Krummel PB (2005) Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys Res Lett 32:L07809

    Article  Google Scholar 

  35. EMEP/MSCE (1996) Transboundary air pollution in Europe. Part 1: Estimated dispersion of acidifying agents and of near surface ozone. Technical Report 1/1996, EMEP/MSCW

    Google Scholar 

  36. Güsten H (1999) Predicting the abiotic degradability of organic pollutants in the troposphere. Chemosphere 38(6):1361–1370

    Article  Google Scholar 

  37. Gramatica P, Consonni V, Todeschini R (1999) QSAR study on the troposheric degradation of organic compounds. Chemosphere 38(6):1371–1378

    Article  CAS  Google Scholar 

  38. Gramatica P, Pilutti P, Papa E (2003) Predicting the NO3 radical tropospheric degradability of organic pollutants by theoretical molecular descriptors. Atmos Environ 37(22):3115–3124

    Article  CAS  Google Scholar 

  39. Gramatica P, Papa E (2007) Screening and ranking of POPs for global half-life: QSAR approaches for prioritization based on molecular structure. Environ Sci Technol 41(8):2833–2839

    Article  CAS  Google Scholar 

  40. Meylan WM, Howard PH (2003) A review of quantitative structure-activity relationship methods for the prediction of atmospheric oxidation of organic chemicals. Environ Toxicol Chem 22(8):1724–1732

    Article  CAS  Google Scholar 

  41. Öberg T (2005) A QSAR for the hydroxyl radical reaction rate constant: validation, domain of application, and prediction. Atmos Environ 39:2189–2200

    Article  Google Scholar 

  42. Wang Y, Chen J, Li X, Wang B, Cai X, Huang L (2009) Predicting rate constants of hydroxyl radical reactions with organic pollutants: algorithm, validation, applicability domain, and mechanistic interpretation. Atmos Environ 43(5):1131–1135

    Article  CAS  Google Scholar 

  43. Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34:2261–2282

    Article  CAS  Google Scholar 

  44. Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math Mech 5(2):136–139

    Google Scholar 

  45. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 pp

    Google Scholar 

  46. Hicks BB, Baldocchi DD, Mayers TP, Hosker Jr RP, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330

    Article  CAS  Google Scholar 

  47. Tuovinen J-P, Aurela M, Laurila T (1998) Resistances to ozone deposition to a flark fen in the northern aapa mire zone. J Geophys Res 103:16953–16966

    Article  CAS  Google Scholar 

  48. Hicks BB, Liss PS (1976) Transfer of SO2 and other reactive gases across the air-sea interface. Tellus 36:311–330

    Google Scholar 

  49. Baldocchi DD, Hicks BB, Camara P (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos Environ 21:91–101

    Article  CAS  Google Scholar 

  50. Meyers TP, Finkelstein P, Clarke J, Ellestad TG, Sims PF (1998) A multilayer model for inferring dry deposition using standard meteorological measurements. J Geophys Res 103:22645–22661

    Article  CAS  Google Scholar 

  51. Wu Y, Brashers B, Finkelstein PL, Pleim JE (2003) A multilayer biochemical dry deposition model. 1, Model formulation. J Geophys Res 108:D14013

    Google Scholar 

  52. Hirabayashi S, Kroll CN, Nowak DJ (2011) Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environ Model Softw 26:804–816

    Article  Google Scholar 

  53. Zhang L, Brook JR, Vet R (2003) A revised parameterization for gaseous dry deposition in air-quality models. Atmos Chem Phys 3:2067–2082

    Article  CAS  Google Scholar 

  54. Wesely ML (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23(6):1293–1304

    Article  CAS  Google Scholar 

  55. Erisman JW, Van Pul A, Wyers P (1994) Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos Environ 28:2595–2607

    Article  CAS  Google Scholar 

  56. Venkatram A, Pleim J (1999) The electrical analogy does not apply to modeling dry deposition of particles. Atmos Environ 33:3075–3076

    Article  CAS  Google Scholar 

  57. Sportisse B (2007) A review of parameterizations for modelling dry deposition and scavenging of radionuclides. Atmos Environ 41:2683–2698

    Article  CAS  Google Scholar 

  58. Petroff A, Mailliat A, Amielh M, Anselmet F (2008a) Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmos Environ 42:3625–3653

    Article  CAS  Google Scholar 

  59. Pryor SC, Gallagher M, Sievering H, Larsen SE, Barthelmie RJ, Birsan F, et al (2008) A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus B 60(1):42–75

    Article  Google Scholar 

  60. Nho-Kim E-Y, Michou M, Peuch V-H (2004) Parameterization of size-dependent particle dry deposition velocities for global modeling. Atmos Environ 38:1933–1942

    Article  CAS  Google Scholar 

  61. Slinn WGN (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ 16:1785–1794

    Article  Google Scholar 

  62. Zhang L, Gong S, Padro J, Barrie L (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos Environ 35:549–560

    Article  CAS  Google Scholar 

  63. Roustan Y (2005) Modélisation de la dispersion atmosphérique du mercure, du plomb et du cadmium à l'échelle européenne. PhD thesis, École Nationale des Ponts et Chaussées, 167 pp

    Google Scholar 

  64. Katul GG, Grönholm T, Launiainen S, Vesala T (2010) Predicting the dry deposition of aerosol-sized particles using layer-resolved canopy and pipe flow analogy models: role of turbophoresis. J Geophys Res 115:D12202

    Article  Google Scholar 

  65. Petroff A, Mailliat A, Amielh M, Anselmet F (2008b) Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications. Atmos Environ 42:3654–3683

    Article  CAS  Google Scholar 

  66. Zhang J, Shao Y (2014) A new parameterization of particle dry deposition over rough surfaces. Atmos Chem Phys 14:12429–12440

    Article  CAS  Google Scholar 

  67. Katata G (2014) Fogwater deposition modeling for terrestrial ecosystems: a review of developments and measurements. J Geophys Res Atmos 119. doi: 10.1002/2014JD021669

  68. Duhanyan N, Roustan Y (2011) Below-cloud scavenging by rain of atmospheric gases and particulates. Atmos Environ 45:7201–7217

    Article  CAS  Google Scholar 

  69. Ervens B (2015) Modeling the processing of aerosol and trace gases in clouds and fogs. Chem Rev 115:4157–4198

    Article  CAS  Google Scholar 

  70. Wang X, Zhang L, Moran D (2010) Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos Chem Phys 10:5685–5705

    Article  CAS  Google Scholar 

  71. Pudykiewicz J (1989) Simulation of the Chernobyl dispersion with a 3-d hemispheric tracer model. Tellus 41B:391–412

    Article  Google Scholar 

  72. Roselle SJ, Binkowski FS (1999) Cloud dynamics and chemistry. Technical Report EPA/600/R-99/030, Chapter 11, U.S. Environmental Protection Agency

    Google Scholar 

  73. Webster HN, Thomson DJ (2014) The NAME wet deposition scheme. Met Office forecasting research technical, No. 584

    Google Scholar 

  74. Maryon RH, Saltbones J, Ryall DB, Bartnicki J, Jakobsen HA, Berge E (1996) An intercomparison of three long range dispersion models developed for the UK meteorological office, DNMI and EMEP. Technical Report ISBN 82-7144-026-08, UK Met Office

    Google Scholar 

  75. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley-Interscience, New York. ISBN:0-471-17815-2

    Google Scholar 

  76. Slinn WGN (1977) Some approximations for the wet and dry removal of particles and gases from the atmosphere. Water Air Soil Pollut 7:513–543

    Article  CAS  Google Scholar 

  77. Quérel A, Monier M, Flossmann AI, Lemaitre P, Porcheron E (2014) The importance of new collection efficiency values including the effect of rear capture for the below-cloud scavenging of aerosol particles. Atmos Res 142:57–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Ciffroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Loizeau, V., Roustan, Y., Duhanyan, N., Musson-Genon, L., Ciffroy, P. (2018). Modelling the Fate of Chemicals in the Atmosphere. In: Ciffroy, P., Tediosi, A., Capri, E. (eds) Modelling the Fate of Chemicals in the Environment and the Human Body. The Handbook of Environmental Chemistry, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-59502-3_5

Download citation

Publish with us

Policies and ethics