Modelling the Fate of Chemicals in the Atmosphere

  • Vincent Loizeau
  • Yelva Roustan
  • Nora Duhanyan
  • Luc Musson-Genon
  • Philippe CiffroyEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 57)


Atmosphere is an important component of the whole ecosystem because it directly interacts with all the other media, i.e. soil, surface waters, vegetation and biota. This chapter describes the processes that should be considered in models simulating the fate of chemicals in the atmosphere. The first section describes model approaches able to simulate the long-range transport of chemicals in the atmosphere. The second section describes the partition of chemicals between gaseous and particulate phases in the atmosphere. Two approaches, respectively, based on liquid vapour pressure and octanol-air partition coefficient are presented. The third section describes chemical reactions occurring in the atmosphere, driven by photolysis and reactions with photooxidants like the hydroxyl radical OH. The forth section describes dry deposition of both gaseous and particulate chemicals on the earth surface. Dry deposition is driven by aerodynamic, quasi-laminar sublayer and canopy resistances. The calculation of these latter is presented here in detail. The fifth section describes wet deposition of both gaseous and particulate chemicals on the earth surface, driven by rainout (in-cloud) and washout (below-cloud) scavenging.


Advection Aerodynamic resistance Atmosphere Below-cloud scavenging Canopy resistance Dry deposition Hydroxyl radical In-cloud scavenging Long-range transport Modelling Partition between gas and particles Photooxidants Quasi-laminar sublayer resistance Wet deposition 


  1. 1.
    Agency for Toxic Substances and Disease Registry (2000) Toxicological profile for polychlorinated biphenyls (PCBs). U.S. Department of Health and Human Services, AtlantaGoogle Scholar
  2. 2.
    Arisawa K, Takeda H, Mikasa H (2005) Background exposure to PCDDs/PCDFs/PCBs and its potential health effects: a review of epidemiologic studies. J Med Investig 52(1–2):10–21CrossRefGoogle Scholar
  3. 3.
    Brody JG, Moysich KB, Humblet O, Attfield KR, Beehler GP, Rudel RA (2007) Environmental pollutants and breast cancer. Cancer 109(S12):2667–2711CrossRefGoogle Scholar
  4. 4.
    Winneke G, Walkowiak J, Lilienthal H (2002) PCB-induced neurodevelopmental toxicity in human infants and its potential mediation by endocrine dysfunction. Toxicology 181:161–165CrossRefGoogle Scholar
  5. 5.
    Dalton TP, Kerzee JK, Wang B, Miller M, Dieter MZ, Lorenz JN, Puga PA (2001) Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovasc Toxicol 1(4):285–298CrossRefGoogle Scholar
  6. 6.
    Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whyatt RW (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118(6):e1845–e1859CrossRefGoogle Scholar
  7. 7.
    Wang SL, Lin CY, Guo YL, Lin LY, Chou WL, Chang LW (2004) Infant exposure to polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls (PCDD/Fs, PCBs) – correlation between prenatal and postnatal exposure. Chemosphere 54(10):1459–1473CrossRefGoogle Scholar
  8. 8.
    Wania F, Mackay D (1996) Peer reviewed: tracking the distribution of persistent organic pollutants. Environ Sci Technol 30(9):390A–396ACrossRefGoogle Scholar
  9. 9.
    Dalla Valle M, Dachs J, Sweetman AJ, Jones KC (2004) Maximum reservoir capacity of vegetation for persistent organic pollutants: implications for global cycling. Glob Biogeochem Cycles 18:GB4032CrossRefGoogle Scholar
  10. 10.
    Sportisse B (2009) Fundamentals in air pollution: from processes to modelling. Springer, BerlinGoogle Scholar
  11. 11.
    Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  12. 12.
    Boussinesq J (1877) Essai sur la théorie des eaux courantes. Imprimerie nationale, ParisGoogle Scholar
  13. 13.
    Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound-Layer Meteorol 17(2):187–202CrossRefGoogle Scholar
  14. 14.
    Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound-Layer Meteorol 37(1–2):129–148CrossRefGoogle Scholar
  15. 15.
    Atkinson R (1996) Atmospheric chemistry of PCBs, PCDDs and PCDFs. Environ Sci Technol 6:53–72Google Scholar
  16. 16.
    Junge CE (1975) Transport mechanisms for pesticides in the atmosphere. Pure Appl Chem 42:95–104CrossRefGoogle Scholar
  17. 17.
    Junge CE (1977) Basic considerations about trace constituents in the atmosphere as related to the fate of global pollutants. In: Suffet IH (ed) Fate of pollutants in the air and water environments, Part I. Wiley, New York, pp. 7–25Google Scholar
  18. 18.
    Pankow JF (1987) Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos Environ 21(11):2275–2283CrossRefGoogle Scholar
  19. 19.
    Finizio A, Mackay D, Bidleman T, Harner T (1997) Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos Environ 31(15):2289–2296CrossRefGoogle Scholar
  20. 20.
    Harner T, Bidleman TF (1998) Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environ Sci Technol 32(10):1494–1502CrossRefGoogle Scholar
  21. 21.
    Hung H, Blanchard P, Poole G, Thibert B, Chiu CH (2002) Measurement of particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in arctic air at alert, Nunavut, Canada. Atmos Environ 36(6):1041–1050CrossRefGoogle Scholar
  22. 22.
    Kaupp H, McLachlan MS (1999) Gas/particle partitioning of PCDD/Fs, PCBs, PCNs and PAHs. Chemosphere 38(14):3411–3421CrossRefGoogle Scholar
  23. 23.
    Lee RG, Jones KC (1999) Gas-particle partitioning of atmospheric PCDD/Fs: measurements and observations on modeling. Environ Sci Technol 33(20):3596–3604CrossRefGoogle Scholar
  24. 24.
    Salthammer T, Schripp T (2015) Application of the Junge- and Pankow-equation for estimating indoor gas/particle distribution and exposure to SVOCs. Atmos Environ 106:467–476CrossRefGoogle Scholar
  25. 25.
    Xiao H, Wania F (2003) Is vapor pressure or the octanol–air partition coefficient a better descriptor of the partitioning between gas phase and organic matter? Atmos Environ 37(20):2867–2878CrossRefGoogle Scholar
  26. 26.
    Lohmann R, Lammel G (2004) Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modeling. Environ Sci Technol 38(14):3793–3803CrossRefGoogle Scholar
  27. 27.
    Götz CW, Scheringer M, MacLeod M, Roth CM, Hungerbühler K (2007) Alternative approaches for modeling gas-particle partitioning of semivolatile organic chemicals: model development and comparison. Environ Sci Technol 41(4):1272–1278CrossRefGoogle Scholar
  28. 28.
    Yttri KE, Aas W, Bjerke A, Cape JN, Cavalli F, Ceburnis D, Dye C, Emblico L, Facchini MC, Forster C, Hanssen JE, Hansson HC, Jennings SG, Maenhaut W, Putaud JP, Tørseth K (2007) Elemental and organic carbon in PM10: a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP. Atmos Chem Phys 7:5711–5725CrossRefGoogle Scholar
  29. 29.
    Turpin BJ, Lim H-J (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35(1):602–610CrossRefGoogle Scholar
  30. 30.
    Atkinson R (2007) Gas-phase tropospheric chemistry of organic compounds: a review. Atmos Environ 41:200–240CrossRefGoogle Scholar
  31. 31.
    Atkinson R (1988) Estimation of gas-phase hydroxyl radical rate constants for organic chemicals. Environ Toxicol Chem 7(6):435–442CrossRefGoogle Scholar
  32. 32.
    Chen J, Quan X, Yan Y, Yang F, Peijnenburg W (2001) Quantitative structure-property relationship studies on the direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aerosol. Chemosphere 42:263–270CrossRefGoogle Scholar
  33. 33.
    Prinn RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Salameh P, O’Doherty S, Wang RHJ, Porter L, Miller BR (2001) Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 292:1882CrossRefGoogle Scholar
  34. 34.
    Prinn RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Reimann S, Salameh P, O’Doherty S, Wang RHJ, Porter L, Miller BR, Krummel PB (2005) Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys Res Lett 32:L07809CrossRefGoogle Scholar
  35. 35.
    EMEP/MSCE (1996) Transboundary air pollution in Europe. Part 1: Estimated dispersion of acidifying agents and of near surface ozone. Technical Report 1/1996, EMEP/MSCWGoogle Scholar
  36. 36.
    Güsten H (1999) Predicting the abiotic degradability of organic pollutants in the troposphere. Chemosphere 38(6):1361–1370CrossRefGoogle Scholar
  37. 37.
    Gramatica P, Consonni V, Todeschini R (1999) QSAR study on the troposheric degradation of organic compounds. Chemosphere 38(6):1371–1378CrossRefGoogle Scholar
  38. 38.
    Gramatica P, Pilutti P, Papa E (2003) Predicting the NO3 radical tropospheric degradability of organic pollutants by theoretical molecular descriptors. Atmos Environ 37(22):3115–3124CrossRefGoogle Scholar
  39. 39.
    Gramatica P, Papa E (2007) Screening and ranking of POPs for global half-life: QSAR approaches for prioritization based on molecular structure. Environ Sci Technol 41(8):2833–2839CrossRefGoogle Scholar
  40. 40.
    Meylan WM, Howard PH (2003) A review of quantitative structure-activity relationship methods for the prediction of atmospheric oxidation of organic chemicals. Environ Toxicol Chem 22(8):1724–1732CrossRefGoogle Scholar
  41. 41.
    Öberg T (2005) A QSAR for the hydroxyl radical reaction rate constant: validation, domain of application, and prediction. Atmos Environ 39:2189–2200CrossRefGoogle Scholar
  42. 42.
    Wang Y, Chen J, Li X, Wang B, Cai X, Huang L (2009) Predicting rate constants of hydroxyl radical reactions with organic pollutants: algorithm, validation, applicability domain, and mechanistic interpretation. Atmos Environ 43(5):1131–1135CrossRefGoogle Scholar
  43. 43.
    Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34:2261–2282CrossRefGoogle Scholar
  44. 44.
    Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math Mech 5(2):136–139Google Scholar
  45. 45.
    Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 ppGoogle Scholar
  46. 46.
    Hicks BB, Baldocchi DD, Mayers TP, Hosker Jr RP, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330CrossRefGoogle Scholar
  47. 47.
    Tuovinen J-P, Aurela M, Laurila T (1998) Resistances to ozone deposition to a flark fen in the northern aapa mire zone. J Geophys Res 103:16953–16966CrossRefGoogle Scholar
  48. 48.
    Hicks BB, Liss PS (1976) Transfer of SO2 and other reactive gases across the air-sea interface. Tellus 36:311–330Google Scholar
  49. 49.
    Baldocchi DD, Hicks BB, Camara P (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos Environ 21:91–101CrossRefGoogle Scholar
  50. 50.
    Meyers TP, Finkelstein P, Clarke J, Ellestad TG, Sims PF (1998) A multilayer model for inferring dry deposition using standard meteorological measurements. J Geophys Res 103:22645–22661CrossRefGoogle Scholar
  51. 51.
    Wu Y, Brashers B, Finkelstein PL, Pleim JE (2003) A multilayer biochemical dry deposition model. 1, Model formulation. J Geophys Res 108:D14013Google Scholar
  52. 52.
    Hirabayashi S, Kroll CN, Nowak DJ (2011) Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environ Model Softw 26:804–816CrossRefGoogle Scholar
  53. 53.
    Zhang L, Brook JR, Vet R (2003) A revised parameterization for gaseous dry deposition in air-quality models. Atmos Chem Phys 3:2067–2082CrossRefGoogle Scholar
  54. 54.
    Wesely ML (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23(6):1293–1304CrossRefGoogle Scholar
  55. 55.
    Erisman JW, Van Pul A, Wyers P (1994) Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos Environ 28:2595–2607CrossRefGoogle Scholar
  56. 56.
    Venkatram A, Pleim J (1999) The electrical analogy does not apply to modeling dry deposition of particles. Atmos Environ 33:3075–3076CrossRefGoogle Scholar
  57. 57.
    Sportisse B (2007) A review of parameterizations for modelling dry deposition and scavenging of radionuclides. Atmos Environ 41:2683–2698CrossRefGoogle Scholar
  58. 58.
    Petroff A, Mailliat A, Amielh M, Anselmet F (2008a) Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmos Environ 42:3625–3653CrossRefGoogle Scholar
  59. 59.
    Pryor SC, Gallagher M, Sievering H, Larsen SE, Barthelmie RJ, Birsan F, et al (2008) A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus B 60(1):42–75CrossRefGoogle Scholar
  60. 60.
    Nho-Kim E-Y, Michou M, Peuch V-H (2004) Parameterization of size-dependent particle dry deposition velocities for global modeling. Atmos Environ 38:1933–1942CrossRefGoogle Scholar
  61. 61.
    Slinn WGN (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ 16:1785–1794CrossRefGoogle Scholar
  62. 62.
    Zhang L, Gong S, Padro J, Barrie L (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos Environ 35:549–560CrossRefGoogle Scholar
  63. 63.
    Roustan Y (2005) Modélisation de la dispersion atmosphérique du mercure, du plomb et du cadmium à l'échelle européenne. PhD thesis, École Nationale des Ponts et Chaussées, 167 ppGoogle Scholar
  64. 64.
    Katul GG, Grönholm T, Launiainen S, Vesala T (2010) Predicting the dry deposition of aerosol-sized particles using layer-resolved canopy and pipe flow analogy models: role of turbophoresis. J Geophys Res 115:D12202CrossRefGoogle Scholar
  65. 65.
    Petroff A, Mailliat A, Amielh M, Anselmet F (2008b) Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications. Atmos Environ 42:3654–3683CrossRefGoogle Scholar
  66. 66.
    Zhang J, Shao Y (2014) A new parameterization of particle dry deposition over rough surfaces. Atmos Chem Phys 14:12429–12440CrossRefGoogle Scholar
  67. 67.
    Katata G (2014) Fogwater deposition modeling for terrestrial ecosystems: a review of developments and measurements. J Geophys Res Atmos 119. doi:  10.1002/2014JD021669
  68. 68.
    Duhanyan N, Roustan Y (2011) Below-cloud scavenging by rain of atmospheric gases and particulates. Atmos Environ 45:7201–7217CrossRefGoogle Scholar
  69. 69.
    Ervens B (2015) Modeling the processing of aerosol and trace gases in clouds and fogs. Chem Rev 115:4157–4198CrossRefGoogle Scholar
  70. 70.
    Wang X, Zhang L, Moran D (2010) Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos Chem Phys 10:5685–5705CrossRefGoogle Scholar
  71. 71.
    Pudykiewicz J (1989) Simulation of the Chernobyl dispersion with a 3-d hemispheric tracer model. Tellus 41B:391–412CrossRefGoogle Scholar
  72. 72.
    Roselle SJ, Binkowski FS (1999) Cloud dynamics and chemistry. Technical Report EPA/600/R-99/030, Chapter 11, U.S. Environmental Protection AgencyGoogle Scholar
  73. 73.
    Webster HN, Thomson DJ (2014) The NAME wet deposition scheme. Met Office forecasting research technical, No. 584Google Scholar
  74. 74.
    Maryon RH, Saltbones J, Ryall DB, Bartnicki J, Jakobsen HA, Berge E (1996) An intercomparison of three long range dispersion models developed for the UK meteorological office, DNMI and EMEP. Technical Report ISBN 82-7144-026-08, UK Met OfficeGoogle Scholar
  75. 75.
    Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley-Interscience, New York. ISBN:0-471-17815-2Google Scholar
  76. 76.
    Slinn WGN (1977) Some approximations for the wet and dry removal of particles and gases from the atmosphere. Water Air Soil Pollut 7:513–543CrossRefGoogle Scholar
  77. 77.
    Quérel A, Monier M, Flossmann AI, Lemaitre P, Porcheron E (2014) The importance of new collection efficiency values including the effect of rear capture for the below-cloud scavenging of aerosol particles. Atmos Res 142:57–66CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vincent Loizeau
    • 1
  • Yelva Roustan
    • 2
  • Nora Duhanyan
    • 2
  • Luc Musson-Genon
    • 2
    • 3
  • Philippe Ciffroy
    • 1
    Email author
  1. 1.National Hydraulics and Environment LaboratoryEDF R&DChatouFrance
  2. 2.CEREA, Joint Laboratory, Ecole des Ponts ParisTech/EDF R&DUniversité Paris-EstMarne-la-ValléeFrance
  3. 3.Fluid Mechanics, Energy and Environment DepartmentEDF R&DChatouFrance

Personalised recommendations