Advertisement

Modelling the Fate of Chemicals in Surface Waters

Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 57)

Abstract

A good knowledge and modelling of the fate of chemicals in surface waters is essential for achieving a holistic risk assessment approach. This chapter describes the processes that should be considered in models simulating the fate of chemicals in natural waters. The first section describes the exchange of chemicals between the dissolved and particulate phases in water and sediments, as well as the simulation of suspended particulate matter concentration. The second section describes mechanistic modelling of chemical exchange between the overlying water column and bottom sediments that results from deposition and/or resuspension of contaminated particles. The third section describes the diffusion of chemical at the interface between surface water and sediment porewater that is classically based on a two-film diffusion description. The fourth section describes absorption and volatilization of semi-volatile substances at the air-water interface that are generally modelled according to the stagnant boundary theory. The fifth section describes processes responsible for degradation (i.e. hydrolysis, photolysis, biodegradation) that are generally aggregated in a global loss rate.

Keywords

Degradation Deposition Desorption Diffusion Distribution coefficient Modelling Resuspension Sediment Sediment rating curve Sorption Surface waters Suspended particulate matter 

References

  1. 1.
    Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561CrossRefGoogle Scholar
  2. 2.
    Malaj E, von der Ohe P, Grote M, Kühne R, Mondy CP, Usseglio-Polatera P, Brack W, Schäfer RB (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci U S A 111(26):9549–9554CrossRefGoogle Scholar
  3. 3.
    European Environmental Agency (2012) Waterbase – rivers, v.12. http://www.eea.europa.eu/data-and-maps/data/waterbase-rivers-10. Accessed 14 Oct 2016
  4. 4.
    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077CrossRefGoogle Scholar
  5. 5.
    Franco A, Trapp S (2008) Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals. Environ Toxicol Chem 27:1995–2004CrossRefGoogle Scholar
  6. 6.
    Franco A, Fu W, Trapp S (2009) Influence of soil pH on the sorption of ionizable chemicals: modeling advances. Environ Toxicol Chem 28:458–464CrossRefGoogle Scholar
  7. 7.
    Huuskonen J (2003a) Prediction of soil sorption coefficient of organic pesticides from the atom-type electrotopological state indices. Environ Toxicol Chem 22:816–820CrossRefGoogle Scholar
  8. 8.
    Huuskonen J (2003b) Prediction of soil sorption coefficient of a diverse set of organic chemicals from molecular structure. J Chem Inf Comput Sci 43(5):1457–1462CrossRefGoogle Scholar
  9. 9.
    Poole SK, Poole CF (1999) Chromatographic models for the sorption of neutral organic compounds by soil from water and air. J Chromatogr A 845:381–400CrossRefGoogle Scholar
  10. 10.
    Sabljic A, Güsten H, Verhaar H, Hermens J (1995) QSAR modelling of soil sorption. Improvements and systematics of log KOC vs. log KOW correlations. Chemosphere 31:4489–4514. Corrigendum, vol. 33 (1996), p 2577Google Scholar
  11. 11.
    Schüürmann G, Ebert R-U, Kühne R (2006) Prediction of the sorption of organic compounds into soil organic matter from molecular structure. Environ Sci Technol 40:7005–7011CrossRefGoogle Scholar
  12. 12.
    Tao S, Piao H, Dawson R, Lu X, Hu H (1999) Estimation of organic carbon normalized sorption coefficient (Koc) for soils using the fragment constant method. Environ Sci Technol 33:2719–2725CrossRefGoogle Scholar
  13. 13.
    Veyssy E, Etcheber H et al (1998) Seasonal variation and origin of particulate organic carbon in the lower Garonne river at la Reole. Hydrobiologia 391:113–126CrossRefGoogle Scholar
  14. 14.
    Abril G, Nogueira M, Etcheber H, Cabeçadas G, Lemaire E, Brogueira MJ (2002) Behaviour of organic carbon in nine contrasting European estuaries. Estuar Coast Shelf Sci 54:241–262CrossRefGoogle Scholar
  15. 15.
    Ciffroy P, Durrieu G, Garnier JM (2009) Distribution of radionuclides between solid and liquid phases in freshwaters. In: Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. IAEA-TECDOC-1616, Vienna, Austria. 616 ppGoogle Scholar
  16. 16.
    Allison JD, Allison TL (2005) Partition coefficients for metals in surface water, soil, and waste. EPA/600/R- 05/074. US Environmental Protection Agency, Washington, DCGoogle Scholar
  17. 17.
    Cohn TA, Caulder DL, Gilroy EJ, Zynjuk LD, Summers RM (1992) The validity of a simple statistical model for estimating fluvial constituents loads: an empirical study involving nutrient loads entering Chesapeake Bay. Water Resour Res 28:2353–2363CrossRefGoogle Scholar
  18. 18.
    Ferguson RI (1986) River loads underestimated by rating curves. Water Resour Res 22:74–76CrossRefGoogle Scholar
  19. 19.
    Asselman NEM (2000) Fitting and interpretation of sediment rating curves. J Hydrol 234(3–4):228–248CrossRefGoogle Scholar
  20. 20.
    Crowder DW, Demissie M, Markus M (2007) The accuracy of sediment loads when log-transformation produces nonlinear sediment load–discharge relationships. J Hydrol 336(3–4):250–268CrossRefGoogle Scholar
  21. 21.
    Morehead MD, Syvitski JP, Hutton EWH, Peckham SD (2003) Modeling the temporal variability in the flux of sediment from ungauged river basins. Glob Planet Chang 39(1–2):95–110CrossRefGoogle Scholar
  22. 22.
    Pont D, Simonnet J-P, Walter AV (2002) Medium-term changes in suspended sediment delivery to the ocean: consequences of catchment heterogeneity and river management (Rhône River, France). Estuar Coast Shelf Sci 54(1):1–18CrossRefGoogle Scholar
  23. 23.
    Horowitz AJ (2008) Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes. Sci Total Environ 400:315–343CrossRefGoogle Scholar
  24. 24.
    Moog DB, Whiting PJ (1998) Annual hysteresis in bed load rating curves. Water Resour Res 34(9):2393–2399CrossRefGoogle Scholar
  25. 25.
    Ciffroy P, Moulin C, Gailhard J (2000) A model simulating the transport of dissolved and particulate copper in the Seine river. Ecol Model 127(2–3):99–117CrossRefGoogle Scholar
  26. 26.
    Morgan RPC (1995) Soil erosion and conservation, 2nd edn. Longman, London, 198 ppGoogle Scholar
  27. 27.
    Peters-Kümmerly BE (1973) Undersuchungen über Zusammensetzung und Transport von Schwebstoffen in einigen Schweizer Flüseen. Geogr Helv 28:137–151CrossRefGoogle Scholar
  28. 28.
    Rustomji P, Wilkinson SN (2008) Applying bootstrap resampling to quantify uncertainty in fluvial suspended sediment loads estimated using rating curves. Water Resour Res 44:W09434. doi: 10.1029/2007WR006088 Google Scholar
  29. 29.
    Syvitski J, Morehaed M, Bahr D, Mulder T (2000) Estimating fluvial sediment transport: the rating parameters. Water Resour Res 36(9):2747–2760CrossRefGoogle Scholar
  30. 30.
    Ha HK, Maa JPY (2009) Evaluation of two conflicting paradigms for cohesive sediment deposition. Mar Geol 265:120–129CrossRefGoogle Scholar
  31. 31.
    Winterwerp JC (2006) On the sedimentation rate of cohesive sediment. In: Maa JPY, Sanford LP, Schoellhamer DH (eds) Estuarine and coastal fine sediment dynamics. Elsevier, Amsterdam, pp. 209–226Google Scholar
  32. 32.
    Gerbersdorf SU, Jancke T, Westrich B (2005) Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments – temporal and vertical pattern at the Lauffen reservoir/River Neckar, Germany. Limnologica 35:132–144CrossRefGoogle Scholar
  33. 33.
    Haag I, Kern U, Westrich B (2001) Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments. Sci Total Environ 266:249–257CrossRefGoogle Scholar
  34. 34.
    Lau YL, Droppo IG, Krishnappan BG (2001) Sequential erosion/deposition experiments – demonstrating the effects of depositional history on sediment erosion. Water Res 35:2767–2773CrossRefGoogle Scholar
  35. 35.
    Lick W, McNeil J (2001) Effects of sediment bulk properties on erosion rates. Sci Total Environ 266:41–48CrossRefGoogle Scholar
  36. 36.
    Sanford LP, Maa J (2001) A unified erosion formulation for fine sediments. Mar Geol 179:9–23CrossRefGoogle Scholar
  37. 37.
    Graham GW, Manning AJ (2007) Floc size and settling velocity within a Spartina anglica canopy. Cont Shelf Res 27:1060–1079CrossRefGoogle Scholar
  38. 38.
    Kozerski HP (2002) Determination of areal sedimentation rates in rivers by using plate sediment trap measurements and flow velocity – settling flux relationship. Water Res 36:2983–2990CrossRefGoogle Scholar
  39. 39.
    Maa JPY, Kwon JI (2007) Using ADV for cohesive sediment settling velocity measurements. Estuar Coast Shelf Sci 73:351–354CrossRefGoogle Scholar
  40. 40.
    Mantovanelli A, Ridd PV (2006) Devices to measure settling velocities of cohesive sediment aggregates: a review of the in situ technology. J Sea Res 56(3):199–226CrossRefGoogle Scholar
  41. 41.
    El Ganaoui O, Schaaff E, Boyer P, Amielh M, Anselmet F, Grenz C (2004) The deposition and erosion of cohesive sediments determined by a multi-class model. Estuar Coast Shelf Sci 60:457–475CrossRefGoogle Scholar
  42. 42.
    Blom G, Aalderink R (1998) Calibration of three resuspension/sedimentation models. Water Sci Technol 37:41–49CrossRefGoogle Scholar
  43. 43.
    Voulgaris G, Meyers ST (2004) Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Cont Shelf Res 24:1659–1683CrossRefGoogle Scholar
  44. 44.
    Sørensen PB, Fauser P, Carlsen L, Vikelsøe J (2001) Theoretical evaluation of the sediment/water exchange description in generic compartment models (SimpleBox) NERI Technical Report No. 360, July 2001Google Scholar
  45. 45.
    O’Connor BL, Hondzo M (2008) Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments. Limnol Oceanogr 53(2):566–578CrossRefGoogle Scholar
  46. 46.
    Bryant LD, Lorrai C, McGinnis DF, Brand A, Wüest A, Little JC (2010) Variable sediment oxygen uptake in response to dynamic forcing. Limnol Oceanogr 55(2):950–964CrossRefGoogle Scholar
  47. 47.
    Schwarzenbach RP, Gschwend PM, Imboden DM (2002) Environmental organic chemistry, 2nd edn. Wiley, Hoboken, NJCrossRefGoogle Scholar
  48. 48.
    Wanninkhof R, Ledwell JR, Crusius J (1991) Gas transfer velocities on lakes measured with SF. In: Wilhelm SC, Gulliver JS (eds) Air-water mass transfer. American Society of Civil Engineers, New York, pp. 441–458Google Scholar
  49. 49.
    Hornbuckle KC, Jeremiason JD, Eisenreich SJ (1994) Seasonal variations in air-water exchange of polychlorinated biphenyls in Lake Superior. Environ Sci Technol 28:1491–1501CrossRefGoogle Scholar
  50. 50.
    Bidleman TF, McConnell LL (1995) A review of field experiments to determine air-water gas exchange of persistent organic pollutants. Sci Total Environ 159:101–117CrossRefGoogle Scholar
  51. 51.
    Abraham MH, Andonian-Haftvan J, Whiting GS, Leo A, Taft RS (1994) Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapors in water at 298 K, and a new method for its determination. J Chem Soc Perkin Trans 2:1777–1791CrossRefGoogle Scholar
  52. 52.
    Kühne R, Ebert R-U, Schüürmann G (2005) Prediction of the temperature dependency of Henry's Law constant from chemical structure. Environ Sci Technol 39:6705–6711CrossRefGoogle Scholar
  53. 53.
    Meylan W, Howard P (1991) Bond contribution method for estimating Henry’s law constants. Environ Toxicol Chem 10:1283–1293CrossRefGoogle Scholar
  54. 54.
    Viswanadhan VN, Ghose AK, Singh UC, Wendoloski JJ (1999) Prediction of solvation free energies of small organic molecules. Additive-constitutive models based on molecular fingerprints and atomic constants. J Chem Inform Comput Sci 39:405–412CrossRefGoogle Scholar
  55. 55.
    Kühne R, Ebert RU, Schüürmann G (2007) Estimation of compartmental half-lives of organic compounds–structural similarity versus EPI-suite. QSAR Comb Sci 26(4):542–549CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.EDF R&D, National Hydraulics and Environment LaboratoryChatouFrance

Personalised recommendations