Skip to main content

Laboratory Evaluation for Thyroid Nodules

  • Chapter
  • First Online:
Thyroid Nodules

Part of the book series: Contemporary Endocrinology ((COE))

  • 1397 Accesses

Abstract

Science drives technology, and technology drives medicine. Advances in technology have led to more sensitive and accurate laboratory assays in endocrine practice. Whereas previously, clinical examination directed diagnosis and treatment, currently, laboratory tests facilitate diagnosis by accurate assessment of hormone secretion and production. While far from perfect, laboratory tests assist clinicians make correct diagnosis and offer specific therapy.

Thyroid function testing is indicated in those with thyroid nodules. Once a thyroid nodule has been identified, the next step in management should be the measurement of serum thyroid-stimulating hormone (TSH). What follows afterward depends on the TSH level: if normal or elevated, ultrasound and fine needle aspiration biopsy should be considered; if low, thyroid hormone levels, radioiodine uptake, and scan may be indicated. Laboratory evaluation is not only important when a nodule is identified but also in the postoperative care of those diagnosed with thyroid malignancy.

Here we describe the evaluation of thyroid nodular disease using laboratory studies along with some of the present-day caveats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lechan RM, Segerson TP. Pro-TRH gene expression and precursor peptides in rat brain. Observations by hybridization analysis and immunocytochemistry. Ann N Y Acad Sci. 1989;553:29–59.

    Article  CAS  PubMed  Google Scholar 

  2. Merchenthaler I, Liposits Z. Mapping of thyrotropin-releasing hormone (TRH) neuronal systems of rat forebrain projecting to the median eminence and the OVLT. Immunocytochemistry combined with retrograde labeling at the light and electron microscopic levels. Acta Biol Hung. 1994;45(2–3):361–74.

    CAS  PubMed  Google Scholar 

  3. Ishikawa K, Taniguchi Y, Inoue K, Kurosumi K, Suzuki M. Immunocytochemical delineation of thyrotrophic area: origin of thyrotropin-releasing hormone in the median eminence. Neuroendocrinology. 1988;47(5):384–8.

    Article  CAS  PubMed  Google Scholar 

  4. Perez-Castro C, Renner U, Haedo MR, Stalla GK, Arzt E. Cellular and molecular specificity of pituitary gland physiology. Physiol Rev. 2012;92(1):1–38.

    Article  CAS  PubMed  Google Scholar 

  5. Lucke C, Hehrmann R, von Mayersbach K, von zur Mühlen A. Studies on circadian variations of plasma TSH, thyroxine and triiodothyronine in man. Acta Endocrinol. 1977;86(1):81–8.

    CAS  PubMed  Google Scholar 

  6. Weeke J, Gundersen HJ. Circadian and 30 minutes variations in serum TSH and thyroid hormones in normal subjects. Acta Endocrinol. 1978;89(4):659–72.

    CAS  PubMed  Google Scholar 

  7. de Lloyd A, Bursell J, Gregory JW, Rees DA, Ludgate M. TSH receptor activation and body composition. J Endocrinol. 2010;204(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  8. Zaidi M, Davies TF, Zallone A, Blair HC, Iqbal J, Moonga SS, Mechanick J, Sun L. Thyroid-stimulating hormone, thyroid hormones, and bone loss. Curr Osteoporos Rep. 2009;7(2):47–52.

    Article  PubMed  Google Scholar 

  9. Miot F, Dupuy C, Dumont J, et al. Chapter 2 Thyroid hormone synthesis and secretion [Updated 2015 Sept 2]. [book auth.] Chrousos G, Dungan K, et al. De Groot LJ. Endotext [Internet]. South Dartmouth: MDText.com,Inc., 2000. Available from: http://www.ncbi.nlm.nih.gov/books/NBK285550/

  10. Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-pituitary-thyroid axis. Compr Physiol. 2016;6(3):1387–428.

    Article  PubMed  Google Scholar 

  11. Mortoglou A, Candiloros H. The serum triiodothyronine to thyroxine (T3/T4) ratio in various thyroid disorders and after Levothyroxine replacement therapy. Hormones (Athens). 2004;3(2):120–6.

    Article  CAS  Google Scholar 

  12. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29(7):898–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marsili A, Zavacki AM, Harney JW, Larsen PR. Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J Endocrinol Investig. 2011;34(5):395–407.

    Article  CAS  Google Scholar 

  14. Mundy GR, Guise TA. Hormonal control of calcium homeostasis. Clin Chem. 1999;45(8 pt 2):1347–52.

    CAS  PubMed  Google Scholar 

  15. Cote GJ, Grubbs EG, Hofmann MC. Thyroid C-cell biology and oncogenic transformation. Recent Results Cancer Res. 2015;204:1–39.

    Article  PubMed  Google Scholar 

  16. Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid. 2008;18(2):141–4.

    Article  CAS  PubMed  Google Scholar 

  17. Andersen S, Pedersen KM, Bruun NH, Laurberg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab. 2002;87(3):1068–72.

    Article  CAS  PubMed  Google Scholar 

  18. Benhadi N, Fliers E, Visser TJ, Reitsma JB, Wiersinga WM. Pilot study on the assessment of the setpoint of the hypothalamus-pituitary-thyroid axis in healthy volunteers. Eur J Endocrinol. 2010;162(2):323–9.

    Article  CAS  PubMed  Google Scholar 

  19. Leow MK, Goede SL. The homeostatic set point of the hypothalamus-pituitary-thyroid axis—maximum curvature theory for personalized euthyroid targets. Theor Biol Med Model. 2014;11:35.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goede SL, Leow MK, Smit JW, Dietrich JW. A novel minimal mathematical model of the hypothalamus-pituitary-thyroid axis validated for individualized clinical applications. Math Biosci. 2014;249:1–7.

    Article  CAS  PubMed  Google Scholar 

  21. Panicker V, Wilson SG, Spector TD, Brown SJ, Kato BS, Reed PW, Falchi M, Richards JB, Surdulescu GL, Lim EM, Fletcher SJ, Walsh JP. Genetic loci linked to pituitary-thyroid axis set points: a genome-wide scan of a large twin cohort. J Clin Endocrinol Metab. 2008;93(9):3519–23.

    Article  CAS  PubMed  Google Scholar 

  22. Panicker V, Wilson SG, Spector TD, Brown SJ, Falchi M, Richards JB, Surdulescu GL, Lim EM, Fletcher SJ, Walsh JP. Heritability of serum TSH, free T4 and free T3 concentrations: a study of a large UK twin cohort. Clin Endocrinol. 2008;68(4):652–9.

    Article  CAS  Google Scholar 

  23. Goede SL, Leow MK, Smit JW, Klein HH, Dietrich JW. Hypothalamus-pituitary-thyroid feedback control: implications of mathematical modeling and consequences for thyrotropin (TSH) and free thyroxine (FT4) reference ranges. Bull Math Biol. 2014;76(6):1270–87.

    Article  CAS  PubMed  Google Scholar 

  24. Baloch Z, Carayon P, Conte-Devolx B, Demers LM, Feldt-Rasmussen U, Henry JF, LiVosli VA, Niccoli-Sire P, John R, Ruf J, Smyth PP, Spencer CA, Stockigt JR, Guidelines Committee, National Academy of Clinical Biochemistry. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13(1):3–126.

    Article  PubMed  Google Scholar 

  25. Utiger R. Radioimmunoassay of human plasma thyrotropin. J Clin Invest. 1965;44:1277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spencer CA, Nicoloff JT. Improved radioimmunoassay for human TSH. Clin Chim Acta. 1980;108(3):415–24.

    Article  CAS  PubMed  Google Scholar 

  27. Evans M, Croxson MS, Wilson TM, Ibbertson HK. The screening of patients with suspected thyrotoxicosis using a sensitive TSH radioimmunoassay. Clin Endocrinol. 1985;22(4):445–351.

    Article  CAS  Google Scholar 

  28. Spencer CA, Takeuchi M, Kazarosyan M, MacKenzie F, Beckett GJ, Wilkinson E. Interlaboratory/intermethod differences in functional sensitivity of immunometric assays of thyrotropin (TSH) and impact on reliability of measurement of subnormal concentrations of TSH. Clin Chem. 1995;41(3):367–74.

    CAS  PubMed  Google Scholar 

  29. Haugen BR. Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab. 2009;23(6):793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samuels MH. Effects of metyrapone administration on thyrotropin secretion in healthy subjects—a clinical research center study. J Clin Endocrinol Metab. 2000;85(9):3049–52.

    CAS  PubMed  Google Scholar 

  31. Karimifar M, Aminorroaya A, Amini M, et al. Effect of metformin on thyroid stimulating hormone and thyroid volume in patients with prediabetes: a randomized placebo-controlled clinical trial. J Res Med Sci. 2014;19(11):1019–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Taurog A. The mechanism of action of the thioureylene antithyroid drugs. Endocrinology. 1976;98(4):1031–46.

    Article  CAS  PubMed  Google Scholar 

  33. Yalamanchi S, Cooper DS. Thyroid disorders in pregnancy. Curr Opin Obstet Gynecol. 2015;27(6):406–15.

    Article  PubMed  Google Scholar 

  34. Korevaar TI, Medici M, de Rijke YB, Visser W, de Muinck Keizer-Schrama SM, Jaddoe VW, Hofman A, Ross HA, Visser WE, Hooijkaas H, Steegers EA, Tiemeier H, Bongers-Schokking JJ, Visser TJ, Peeters RP. Ethnic differences in maternal thyroid parameters during pregnancy: the Generation R study. J Clin Endocrinol Metab. 2013;98(9):3678–86.

    Article  CAS  PubMed  Google Scholar 

  35. Yim CH. Update on the management of thyroid disease during pregnancy. Endocrinol Metab (Seoul). 2016;31(3):386–91. [Epub ahead of print]

    Article  Google Scholar 

  36. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, Braverman LE. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.

    Article  CAS  PubMed  Google Scholar 

  37. Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab. 2007;92(12):4575–82.

    Article  CAS  PubMed  Google Scholar 

  38. Kratzsch J, Fiedler GM, Leichtle A, Brügel M, Buchbinder S, Otto L, Sabri O, Matthes G, Thiery J. New reference intervals for thyrotropin and thyroid hormones based on National Academy of Clinical Biochemistry criteria and regular ultrasonography of the thyroid. Clin Chem. 2005;51(8):1480–6.

    Article  CAS  PubMed  Google Scholar 

  39. Wartofsky L, Dickey RA. The evidence for a narrower thyrotropin reference range is compelling. J Clin Endocrinol Metab. 2005;90(9):5483–8.

    Article  CAS  PubMed  Google Scholar 

  40. Surks MI, Goswami G, Daniels GH. The thyrotropin reference range should remain unchanged. J Clin Endocrinol Metab. 2005;90(9):5489–96.

    Article  CAS  PubMed  Google Scholar 

  41. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, Cooper DS, Kim BW, Peeters RP, Rosenthal MS, Sawka AM, Replacement, American Thyroid Association Task Force on Thyroid Hormone. Guidelines for the treatment of hypothyroidism: prepared by the American thyroid association task force on thyroid hormone replacement. Thyroid. 2014;24(12):1670–751.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, Pessah-Pollack R, Singer PA, Woeber KA, American Association of Clinical Endocrinologists and American Thyroid Association Taskforce on Hypothyroidism in Adults. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract. 2012;18(6):988–1028.

    Article  PubMed  Google Scholar 

  43. Oppenheimer JH. Role of plasma proteins in the binding, distribution and metabolism of the thyroid hormones. N Engl J Med. 1968;278(21):1153–62.

    Article  CAS  PubMed  Google Scholar 

  44. Mendel CM, Weisiger RA, Jones AL, Cavalieri RR. Thyroid hormone-binding proteins in plasma facilitate uniform distribution of thyroxine within tissues: a perfused rat liver study. Endocrinology. 1987;120(5):1742–9.

    Article  CAS  PubMed  Google Scholar 

  45. Schussler GC. The thyroxine-binding proteins. Thyroid. 2000;10(2):141–9.

    Article  CAS  PubMed  Google Scholar 

  46. Schreiber G. The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J Endocrinol. 2002;175(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  47. Pappa T, Ferrara AM, Refetoff S. Inherited defects of thyroxine-binding proteins. Best Pract Res Clin Endocrinol Metab. 2015;29(5):735–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Janssen OE, Golcher HM, Grasberger H, Saller B, Mann K, Refetoff S. Characterization of T(4)-binding globulin cleaved by human leukocyte elastase. J Clin Endocrinol Metab. 2002;87(3):1217–22.

    Article  CAS  PubMed  Google Scholar 

  49. Klee GG. Clinical usage recommendations and analytic performance goals for total and free triiodothyronine measurements. Clin Chem. 1996;42(1):155–9.

    CAS  PubMed  Google Scholar 

  50. Steele BW, Wang E, Palmer-Toy DE, Killeen AA, Elin RJ, Klee GG. Total long-term within-laboratory precision of cortisol, ferritin, thyroxine, free thyroxine, and thyroid-stimulating hormone assays based on a College of American Pathologists fresh frozen serum study: do available methods meet medical needs for precision? Arch Pathol Lab Med. 2005;129(3):318–22.

    CAS  PubMed  Google Scholar 

  51. Van Uytfanghe K, Stöckl D, Ross HA, Thienpont LM. Use of frozen sera for FT4 standardization: investigation by equilibrium dialysis combined with isotope dilution-mass spectrometry and immunoassay. Clin Chem. 2006;52(9):1817–21.

    Article  PubMed  CAS  Google Scholar 

  52. Soukhova N, Soldin OP, Soldin SJ. Isotope dilution tandem mass spectrometric method for T4/T3. Clin Chim Acta. 2004;343(1–2):185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bartalena L, Bogazzi F, Brogioni S, Burelli A, Scarcello G, Martino E. Measurement of serum free thyroid hormone concentrations: an essential tool for the diagnosis of thyroid dysfunction. Horm Res. 1996;45(3–5):142–7.

    Article  CAS  PubMed  Google Scholar 

  54. Howorth PJ, Maclagan NF. Clinical application of serum-total-thyroxine estimation, resin uptake, and free-thyroxine index. Lancet. 1969;1(7588):224–8.

    Article  CAS  PubMed  Google Scholar 

  55. Rosenfeld L. “Free thyroxine index”. A reliable substitute for “free” thyroxine concentration. Am J Clin Pathol. 1974;61(1):118–21.

    Article  CAS  PubMed  Google Scholar 

  56. Glinoer D, Fernandez-Deville M, Ermans AM. Use of direct thyroxine-binding globulin measurement in the evaluation of thyroid function. J Endocrinol Investig. 1978;1(4):329–35.

    Article  CAS  Google Scholar 

  57. Bartalena L, Robbins J. Thyroid hormone transport proteins. Clin Lab Med. 1993;13(3):583–98.

    CAS  PubMed  Google Scholar 

  58. van Deventer HE, Mendu DR, Remaley AT, Soldin SJ. Inverse log-linear relationship between thyroid-stimulating hormone and free thyroxine measured by direct analog immunoassay and tandem mass spectrometry. Clin Chem. 2011;57(1):122–7.

    Article  PubMed  CAS  Google Scholar 

  59. Chopra IJ, Taing P, Mikus L. Direct determination of free triiodothyronine (T3) in undiluted serum by equilibrium dialysis/radioimmunoassay (RIA). Thyroid. 1996;6(4):255–9.

    Article  CAS  PubMed  Google Scholar 

  60. Stockigt JR. Free thyroid hormone measurement. A critical appraisal. Endocrinol Metab Clin N Am. 2001;30(2):265–89.

    Article  CAS  Google Scholar 

  61. Nelson JC, Weiss RM, Wilcox RB. Underestimates of serum free thyroxine (T4) concentrations by free T4 immunoassays. J Clin Endocrinol Metab. 1994;79(1):76–9.

    Google Scholar 

  62. Clarke W, Schiel JE, Moser A, Hage DS. Analysis of free hormone fractions by an ultrafast immunoextraction/displacement immunoassay: studies using free thyroxine as a model system. Anal Chem. 2005;77(6):1859–66.

    Article  CAS  PubMed  Google Scholar 

  63. Toldy E, Locsei Z, Szabolcs I, Bezzegh A, Kovács GL. Protein interference in thyroid assays: an in vitro study with in vivo consequences. Clin Chim Acta. 2005;352(1–2):93–104.

    Article  CAS  PubMed  Google Scholar 

  64. Nelson JC, Weiss RM. The effect of serum dilution on free thyroxine (T4) concentration in the low T4 syndrome of nonthyroidal illness. J Clin Endocrinol Metab. 1985;61(2):239–46.

    Article  CAS  PubMed  Google Scholar 

  65. Zucchelli GC, Pilo A, Chiesa MR, Masini S. Systematic differences between commercial immunoassays for free thyroxine and free triiodothyronine in an external quality assessment program. Clin Chem. 1994;40(10):1956–61.

    CAS  PubMed  Google Scholar 

  66. Dong BJ. How medications affect thyroid function. West J Med. 2000;172(2):102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Narayana SK, Woods DR, Boos CJ. Management of amiodarone-related thyroid problems. Ther Adv Endocrinol Metab. 2011;2(3):115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kwok JS, Chan IH, Chan MH. Biotin interference on TSH and free thyroid hormone measurement. Pathology. 2012;44(3):278–80.

    Article  CAS  PubMed  Google Scholar 

  69. Meier DA, Kaplan MM. Radioiodine uptake and thyroid scintiscanning. Endocrinol Metab Clin N Am. 2001;30(2):291–313.

    Article  CAS  Google Scholar 

  70. Jung SJ, Kim DW. Ultrasonographic and cytopathological features of an inflammatory pseudonodule in the thyroid gland. Diagn Cytopathol. 2016;44(9):725–30. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  71. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Okani CO, Otene B, Nyaga T, Ngbea J, Eke A, Edegbe F, Anyiam D. Report of a case of papillary thyroid carcinoma in association with Hashimoto's thyroiditis. Niger Med J. 2015;56(6):433–5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Keskin M, Savas-Erdeve S, Aycan Z. Co-existence of thyroid nodule and thyroid cancer in children and adolescents with Hashimoto thyroiditis: a single-center study. Horm Res Paediatr. 2016;85(3):181–7.

    Article  CAS  PubMed  Google Scholar 

  74. Dong LQ, Sun XM, Xiang CF, Wu J, Yu P. Hashimoto’s thyroiditis and papillary carcinoma in an adolescent girl: a case report. Mol Clin Oncol. 2016;5(1):129–31.

    PubMed  PubMed Central  Google Scholar 

  75. Repplinger D, Bargren A, Zhang YW, Adler JT, Haymart M, Chen H. Is Hashimoto’s thyroiditis a risk factor for papillary thyroid cancer? J Surg Res. 2008;150(1):49–52.

    Article  PubMed  Google Scholar 

  76. Noureldine SI, Tufano RP. Association of Hashimoto’s thyroiditis and thyroid cancer. Curr Opin Oncol. 2015;27(1):21–5.

    Article  PubMed  Google Scholar 

  77. Jankovic B, Le KT, Hershman JM. Clinical review: Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab. 2013;98(2):474–82.

    Article  CAS  PubMed  Google Scholar 

  78. Girardi FM, Barra MB, Zettler CG. Papillary thyroid carcinoma: does the association with Hashimoto’s thyroiditis affect the clinicopathological characteristics of the disease? Braz J Otorhinolaryngol. 2015;81(3):283–7.

    Article  PubMed  Google Scholar 

  79. Bozec A, Lassalle S, Hofman V, Ilie M, Santini J, Hofman P. The thyroid gland: a crossroad in inflammation-induced carcinoma? An ongoing debate with new therapeutic potential. Curr Med Chem. 2010;17(30):3449–61.

    Article  CAS  PubMed  Google Scholar 

  80. Zhu F, Shen YB, Li FQ, Fang Y, Hu L, Wu YJ. The effects of hashimoto thyroiditis on lymph node metastases in unifocal and multifocal papillary thyroid carcinoma: a retrospective Chinese cohort study. Medicine (Baltimore). 2016;95(6):e2674.

    Article  CAS  Google Scholar 

  81. Konturek A, Barczyński M, Nowak W, Wierzchowski W. Risk of lymph node metastases in multifocal papillary thyroid cancer associated with Hashimoto’s thyroiditis. Langenbeck’s Arch Surg. 2014;399(2):229–36.

    Article  Google Scholar 

  82. Rhoden KJ, Unger K, Salvatore G, Yilmaz Y, Vovk V, Chiappetta G, Qumsiyeh MB, Rothstein JL, Fusco A, Santoro M, Zitzelsberger H, Tallini G. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab. 2006;91(6):2414–23.

    Article  CAS  PubMed  Google Scholar 

  83. Ahn D, Heo SJ, Park JH, Kim JH, Sohn JH, Park JY, Park SK, Park J. Clinical relationship between Hashimoto’s thyroiditis and papillary thyroid cancer. Acta Oncol. 2011;50(8):1228–34.

    Article  PubMed  Google Scholar 

  84. Wirtschafter A, Schmidt R, Rosen D, Kundu N, Santoro M, Fusco A, Multhaupt H, Atkins JP, Rosen MR, Keane WM, Rothstein JL. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto’s thyroiditis. Laryngoscope. 1997;107(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  85. Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016;12(4):192–202.

    Article  CAS  PubMed  Google Scholar 

  86. Nikiforov YE. RET/PTC rearrangement—a link between Hashimoto’s thyroiditis and thyroid cancer … or not. J Clin Endocrinol Metab. 2006;91(6):2040–2.

    Article  CAS  PubMed  Google Scholar 

  87. Arif S, Blanes A, Diaz-Cano SJ. Hashimoto’s thyroiditis shares features with early papillary thyroid carcinoma. Histopathology. 2002;41(4):357–62.

    Article  CAS  PubMed  Google Scholar 

  88. Boelaert K, Horacek J, Holder RL, Watkinson JC, Sheppard MC, Franklyn JA. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J Clin Endocrinol Metab. 2006;91(11):4295–301.

    Article  CAS  PubMed  Google Scholar 

  89. Polyzos SA, Kita M, Efstathiadou Z, Poulakos P, Slavakis A, Sofianou D, Flaris N, Leontsini M, Kourtis A, Avramidis A. Serum thyrotropin concentration as a biochemical predictor of thyroid malignancy in patients presenting with thyroid nodules. J Cancer Res Clin Oncol. 2008;134(9):953–60.

    Article  CAS  PubMed  Google Scholar 

  90. Haymart MR, Repplinger DJ, Leverson GE, Elson DF, Sippel RS, Jaume JC, Chen H. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J Clin Endocrinol Metab. 2008;93(3):809–14.

    Article  CAS  PubMed  Google Scholar 

  91. Surks MI, Boucai L. Age- and race-based serum thyrotropin reference limits. J Clin Endocrinol Metab. 2010;95(2):496–502.

    Article  CAS  PubMed  Google Scholar 

  92. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2007;29(1):76–131.

    Article  PubMed  CAS  Google Scholar 

  93. Mussa A, Salerno MC, Bona G, Wasniewska M, Segni M, Cassio A, Vigone MC, Gastaldi R, Iughetti L, Santanera A, Capalbo D, Matarazzo P, De Luca F, Weber G, Corrias A. Serum thyrotropin concentration in children with isolated thyroid nodules. J Pediatr. 2013;163(5):1465–70.

    Article  CAS  PubMed  Google Scholar 

  94. Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13:427–53.

    Article  CAS  PubMed  Google Scholar 

  95. Hegedüs L, Bonnema SJ, Bennedbaek FN. Management of simple nodular goiter: current status and future perspectives. Endocr Rev. 2003;24(1):102–32.

    Article  PubMed  Google Scholar 

  96. Griebeler ML, Gharib H, Thompson GB. Medullary thyroid carcinoma. Endocr Pract. 2013;19(4):703–11.

    Article  PubMed  Google Scholar 

  97. Gülben K, Berberoğlu U, Boyabatli M. Prognostic factors for sporadic medullary thyroid carcinoma. World J Surg. 2006;30(1):84–90.

    Article  PubMed  Google Scholar 

  98. Kebebew E, Ituarte PH, Siperstein AE, Duh QY, Clark OH. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer. 2000;88(5):1139–48.

    Article  CAS  PubMed  Google Scholar 

  99. Elisei R, Bottici V, Luchetti F, Di Coscio G, Romei C, Grasso L, et al. Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: experience in 10,864 patients with nodular thyroid disease. J Clin Endocrinol Metab. 2004;89(1):163–8.

    Article  CAS  PubMed  Google Scholar 

  100. Costante G, Meringolo D, Durante C, Bianchi D, Nocera M, Tumino S, Crocetti U, Attard M, Maranghi M, Torlontano M, Filetti S. Predictive value of serum calcitonin levels for preoperative diagnosis of medullary thyroid carcinoma in a cohort of 5817 consecutive patients with thyroid nodules. J Clin Endocrinol Metab. 2007;92(2):450–5.

    Article  CAS  PubMed  Google Scholar 

  101. Herrmann BL, Schmid KW, Goerges R, Kemen M, Mann K. Calcitonin screening and pentagastrin testing: predictive value for the diagnosis of medullary carcinoma in nodular thyroid disease. Eur J Endocrinol. 2010;162(6):1141–5.

    Article  CAS  PubMed  Google Scholar 

  102. Scheuba C, Kaserer K, Kotzmann H, Bieglmayer C, Niederle B, Vierhapper H. Prevalence of C-cell hyperplasia in patients with normal basal and pentagastrin-stimulated calcitonin. Thyroid. 2000;10(5):413–6.

    Article  CAS  PubMed  Google Scholar 

  103. Felsenfeld AJ, Levine BS. Calcitonin, the forgotten hormone: does it deserve to be forgotten? Clin Kidney. 2015;8(2):180–7.

    Article  Google Scholar 

  104. d'Herbomez M, Caron P, Bauters C, Do Cao C, Schlienger JL, Sapin R, Baldet L, Carnaille B, Wémeau JL, French Group GTE (Groupe des Tumeurs and Endocrines). Reference range of serum calcitonin levels in humans: influence of calcitonin assays, sex, age, and cigarette smoking. Eur J Endocrinol. 2007;157(6):749–55.

    Article  PubMed  CAS  Google Scholar 

  105. Cheung K, Roman SA, Wang TS, Walker HD, Sosa JA. Calcitonin measurement in the evaluation of thyroid nodules in the United States: a cost-effectiveness and decision analysis. J Clin Endocrinol Metab. 2008;93(6):2173–80.

    Article  CAS  PubMed  Google Scholar 

  106. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedüs L, Paschke R, Valcavi R, Vitti P, Nodules, AACE/ACE/AME Task Force on Thyroid. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules—2016 update. Endocr Pract. 2016;22(5):622–39.

    PubMed  Google Scholar 

  107. Elisei R, Romei C. Calcitonin estimation in patients with nodular goiter and its significance for early detection of MTC: European comments to the guidelines of the American Thyroid Association. Thyroid Res. 2013;6(1):Supp 2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan A. Parsa MD, FACE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Parsa, A.A., Gharib, H. (2018). Laboratory Evaluation for Thyroid Nodules. In: Gharib, H. (eds) Thyroid Nodules. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59474-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59474-3_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59473-6

  • Online ISBN: 978-3-319-59474-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics