Skip to main content

Effect of the Cement Composition on the Temperature and Strength Rising at Early Age

  • Conference paper
  • First Online:
High Tech Concrete: Where Technology and Engineering Meet

Abstract

The exothermy of cement hydration causes a temperature increase and development of temperature gradients in large concrete structures. Those temperature gradients create mechanical stresses which can induce the development of cracks. These cracks facilitate the penetration of corrosive elements from the outside, such as chlorides, sulfates and salts. A temperature higher than 65 °C can also induce the development of Delayed Ettringite formation (DEF). Understanding which parameters in cement influence the most the release of heat is interesting. In this study, screenings of constituents and characteristics of cement are performed so to determine which ones have the most influence on the thermal activity and heat released in massive concrete structures. C3A seems to be the most influential parameters at early age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AFNOR: EN 196-3+A1. In: Methods of Testing Cement. Part 3: Determination of Setting Times and Soudness (2009)

    Google Scholar 

  • AFNOR: EN 196-9. In: Methods of Testing Cement. Part 9: Heat of Hydration - Semi-adiabatic Method (2010)

    Google Scholar 

  • AFNOR: EN 197-1. In: Cement. Part 1: Composition, Specifications and Conformity Criteria for Common Cement (2012)

    Google Scholar 

  • Bentz, D.P., Garboczi, E.J., Haecker, C.J., Jensen, O.M.: Effects of cement particle size distribution on performance properties of Portland cement-based materials. Cem. Concr. Res. 29, 1663–1671 (1999)

    Article  Google Scholar 

  • Berodier, E.: Impact of the supplementary cementitious materials on the kinetics and microstructural development of cement hydration. Thèse de l’Ecole Polytechnique Fédérale de Lausanne (2015)

    Google Scholar 

  • Bessa-Badreddine, A.: Etude de la contribution des additions minérales aux propriétés physiques, mécaniques et de durabilité des mortiers. Thèse de l’Université de Cergy-Pontoise (2004)

    Google Scholar 

  • Boudchicha, A.: Utilisation des additions minérales et des adjuvants fluidifiants pour l’amélioration des propriétés rhéologiques et mécaniques des bétons. Thèse de l’Université Mentouri Constantine (2007)

    Google Scholar 

  • Fernandez, C., Mercedes, M.: Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate. Thèse de l’Ecole Polytechnique Fédérale de Lausanne (2008)

    Google Scholar 

  • Ferraris, C.F., Obla, K.H., Hill, R.: The influence of mineral admixtures on the rheology of cernent paste and concrete. Cem. Concr. Res. 31, 245–255 (2001)

    Article  Google Scholar 

  • Frigione, G.: Gypsum in cement. In: Advances in Cement Technology, pp. 485–532 (1983)

    Google Scholar 

  • Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  • Kocaba, V.: Development and evaluation of methods to follow microstructural development of cementitious systems including slags. Thèse de l’Ecole polytechnique fédérale de Lausanne (2009)

    Google Scholar 

  • Lothenbach, B., Scrivener, K., Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. 41, 1244–1256 (2011)

    Article  Google Scholar 

  • Minard, H.: Etude intégrée des processus d’hydratation, de coagulation, de rigidification et de prise pour un système C3S-C3A-sulfates-alcalins. Thèse de l’Université de Bourgogne - UFR des Sciences et Techniques (2003)

    Google Scholar 

  • Sprung, S., Kuhlmann, K., Ellerbrock, H.G.: Particle size distribution and properties of cement: Part II: water demand of Portland cement. Zement Kalk Gips Int. 38, 528–534 (1985)

    Google Scholar 

  • Vesilind, P.A.: The Rosin-Rammler particle size distribution. Resour. Recovery Conserv. 5, 275–277 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agathe Bourchy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bourchy, A., Barnes, L., Bessette, L., Torrenti, J.M. (2018). Effect of the Cement Composition on the Temperature and Strength Rising at Early Age. In: Hordijk, D., Luković, M. (eds) High Tech Concrete: Where Technology and Engineering Meet. Springer, Cham. https://doi.org/10.1007/978-3-319-59471-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59471-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59470-5

  • Online ISBN: 978-3-319-59471-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics