Advertisement

Cognitive Insights into Business Process Model Comprehension: Preliminary Results for Experienced and Inexperienced Individuals

  • Michael Zimoch
  • Rüdiger Pryss
  • Thomas Probst
  • Winfried Schlee
  • Manfred Reichert
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 287)

Abstract

Process modeling constitutes a fundamental task in the context of process-aware information systems. Besides process model creation, the reading and understanding of process models is of utmost importance. To better understand the latter, we have developed a conceptual framework focusing on the comprehension of business process models. By adopting concepts from cognitive neuroscience and psychology, the paper presents initial results from a series of eye tracking experiments on process model comprehension. The results indicate that experiences with process modeling have an influence on overall model comprehension. In turn, with increasing process model complexity, individuals with either no or advanced expertise in process modeling do not significantly differ with respect to process model comprehension. The results further indicate that both groups face similar challenges in reading and comprehending process models. The conceptual framework takes these results into account and provides the basis for the further experiments.

Keywords

Business process model comprehension Eye tracking Cognition 

References

  1. 1.
    Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Meicstas, C.: Making sense of business process descriptions: an experimental comparison of graphical and textual notations. J. Syst. Softw. 85, 596–606 (2012)CrossRefGoogle Scholar
  2. 2.
    Schultheiss, L.A., Heiliger, E.: Techniques of flow-charting. In: Proceedings of the 1963 Clinic on Library Applications of Data Processeing, pp. 62–78 (1963)Google Scholar
  3. 3.
    OMG: Business Process Management and Notation 2.0 (2017). www.bpmn.org. Accessed 27 Feb 2017
  4. 4.
    van der Aalst, W.M.P.: Formalization and verification of event-driven process chains. Inf. Softw. Technol. 41, 639–650 (1999)Google Scholar
  5. 5.
    Wilson, J.A.: Gantt charts: a centenary appreciation. Eur. J. Oper. Res. 149, 430–437 (2003)CrossRefGoogle Scholar
  6. 6.
    Johansson, L.O., Wärja, M., Carlsson, S.: An evaluation of business process model techniques, using moody’ quality criterion for a good diagram. In: CEUR Workshop Proceedings, vol. 963 (2012)Google Scholar
  7. 7.
    Figl, K., Recker, J.: Exploring cognitive style and task-specific preferences for process representations. Requirements Eng. 21, 63–85 (2014)CrossRefGoogle Scholar
  8. 8.
    Indulska, M., Green, P., Recker, J., Rosemann, M.: Business process modeling: perceived benefits. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 458–471. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04840-1_34 CrossRefGoogle Scholar
  9. 9.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines (7PMG). Inf. Softw. Technol. 52, 127–136 (2010)CrossRefGoogle Scholar
  10. 10.
    Baars, B.J., Gage, N.M.: Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience. Academic Press, London (2010)Google Scholar
  11. 11.
    Anderson, J.R.: Cognitive Psychology and its Implications. WH Freeman/Times Books/Henry Holt & Co, San Francisco (1990)Google Scholar
  12. 12.
    Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model repositories. Comput. Ind. 62, 467–486 (2011)CrossRefGoogle Scholar
  13. 13.
    Mendling, J.: Metrics for Process Models: Empirical Foundations of Verifiation, Error Prediction, and Guidelines for Correctness. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Majaranta, P.: Gaze Interaction and Applications of Eye Tracking: Advances in Assistive Technologies. IGI Global, Hershey (2011)Google Scholar
  15. 15.
    Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Research and Application, pp. 71–78 (2000)Google Scholar
  16. 16.
    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer, Norwell (2000)Google Scholar
  17. 17.
  18. 18.
    Sirkin, M.: Statistics for the Social Sciences. vol. 3. Sage, Beverly Hills (2005)Google Scholar
  19. 19.
    Zimoch, M., Kolb, J., Reichert, M.: Considering social distance as an influence factor in the process of process modeling. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.) BPMDS/EMMSAD -2016. LNBIP, vol. 248, pp. 97–112. Springer, Cham (2016). doi: 10.1007/978-3-319-39429-9_7 Google Scholar
  20. 20.
    Kiepuszewski, B., Hofstede, A.H.M., Bussler, C.J.: On structured workflow modelling. In: Wangler, B., Bergman, L. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000). doi: 10.1007/3-540-45140-4_29 CrossRefGoogle Scholar
  21. 21.
    Melcher, J., Mendling, J., Reijers, H.A., Seese, D.: On measuring the understandability of process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 465–476. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12186-9_44 CrossRefGoogle Scholar
  22. 22.
    Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75183-0_4 CrossRefGoogle Scholar
  23. 23.
    Reijers, H.A., Mendling, J.: Modularity in process models: review and effects. In: Proceedings of the 5th International Conference on Business Process Management, pp. 20–35 (2008)Google Scholar
  24. 24.
    Mendling, J., Strembeck, M., Recker, J.: Factors of process model comprehension- findings from a series of experiments. Decis. Support Syst. 53, 195–206 (2012)CrossRefGoogle Scholar
  25. 25.
    Moody, D.L.: Cognitive load effects on end user understanding of conceptual models: an experimental analysis. In: Benczúr, A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 129–143. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30204-9_9 CrossRefGoogle Scholar
  26. 26.
    Figl, K., Laue, R.: Cognitive complexity in business process modeling. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 452–466. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21640-4_34 CrossRefGoogle Scholar
  27. 27.
    Moody, D.: The “Physics” of notations: toward a scientific basis for constructing visual notations in software engineering. Trans. Softw. Eng. 35, 756–779 (2009)Google Scholar
  28. 28.
    Linden, D., Zamansky, A., Hadar, I.: How cognitively effective is a visual notation? On the inherent difficulty of operationalizing the physics of notations. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.) BPMDS/EMMSAD -2016. LNBIP, vol. 248, pp. 448–462. Springer, Cham (2016). doi: 10.1007/978-3-319-39429-9_28 Google Scholar
  29. 29.
    Mele, M.L., Federici, S.: Gaze and eye-tracking solutions for psychological research. Cogn. Process. 13, 261–265 (2012)CrossRefGoogle Scholar
  30. 30.
    Jacob, R.J.K., Karn, K.S.: Eye tracking in human-computer interaction and usability research: ready to deliver the promises. In: Mind, vol. 2 (2003)Google Scholar
  31. 31.
    Dobesova, Z., Malcik, M.: Workflow diagrams and pupil dilatation in eye tracking testing. In: Proceedings of 13th International Conference on EMER eLearning Technology and Application, pp. 59–64 (2015)Google Scholar
  32. 32.
    Hogrebe, F., Gehrke, N., Nüttgens, M.: Eye tracking experiments in business process modeling: agenda setting and proof of concept. In: Proceedings of 4th International Workshop on Enterprise Modelling and Information Systems Architectures, pp. 183–188 (2011)Google Scholar
  33. 33.
    Petrusel, R., Mendling, J.: Eye-tracking the factors of process model comprehension tasks. In: Proceedings of 25th International Conference on Advance Information System Engineering, pp. 224–239 (2013)Google Scholar
  34. 34.
    Martini, M., Pinggera, J., Neurauter, M., Sachse, P., Furtner, M., Weber, B.: The impact of working memory and the process of process modelling on model quality: investigating experienced versus inexperienced modellers. In: Scientific Reports, vol. 6 (2016)Google Scholar
  35. 35.
    Weber, B., Pinggera, J., Neurauter, M., Zugal, S., Martini, M., Furtner, M., Sachse, P., Schnitzer, D.: Fixation patterns during process model creation: initial steps toward neuro-adaptive process modeling environments. In: Proceedings 49th International Conference on System Sciences, pp. 600–609 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Zimoch
    • 1
  • Rüdiger Pryss
    • 1
  • Thomas Probst
    • 1
  • Winfried Schlee
    • 2
  • Manfred Reichert
    • 1
  1. 1.Institute of Databases and Information SystemsUlm UniversityUlmGermany
  2. 2.Department of Psychiatry and PsychotherapyRegensburg UniversityRegensburgGermany

Personalised recommendations