Advertisement

Abstract

Business processes are designed with the assumption that the data used by the process is an accurate reflection of reality. However, this assumption does not always hold, and situations of data inaccuracy might occur which bear substantial consequences to the process and to business goals. Until now, data inaccuracy has mainly been addressed in the area of business process management as a possible exception at runtime, to be resolved through exception handling mechanisms. Design-time analysis of potential data inaccuracy has been mostly overlooked so far. In this paper we propose a conceptual framework for incorporating data inaccuracy considerations in process models to support an analysis of data inaccuracy at design time and empirically evaluate its usability by process designers.

Keywords

Data inaccuracy Business process management Business process modeling 

Notes

Acknowledgement

The first and the second authors are supported by the Israel Science Foundation under grant agreement no. 856/13. The third author is supported by the Israel Science Foundation under grant agreement no. 817/15.

References

  1. 1.
    Aalst, W.M.: The application of Petri nets to workflow management. J. Circ. Syst. Comput. 8(01), 21–66 (1998)CrossRefGoogle Scholar
  2. 2.
    Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  3. 3.
    Aebi, D., Perrochon, L.: Towards improving data quality. In: CiSMOD, pp. 273–281 (1993)Google Scholar
  4. 4.
    Agmon, N., Ahituv, N.: Assessing data reliability in an information system. J. Manage. Inf. Syst. 4, 34–44 (1987)Google Scholar
  5. 5.
    Cappiello, C., Pernici, B.: Quality-aware design of repairable processes. In: ICIQ (2008)Google Scholar
  6. 6.
    Cappiello, C., Caro, A., Rodriguez, A., Caballero, I.: An approach to design business processes addressing data quality issues. In: ECIS, p. 216 (1987)Google Scholar
  7. 7.
    Cappiello, C., Pernici, B., Villani, L.: Strategies for data quality monitoring in business processes. In: Benatallah, B., Bestavros, A., Catania, B., Haller, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 9051, pp. 226–238. Springer, Cham (2015). doi: 10.1007/978-3-319-20370-6_18 CrossRefGoogle Scholar
  8. 8.
    Falge, C., Otto, B., Österle, H.: Data quality requirements of collaborative business processes. In: 2012 45th Hawaii International Conference on System Science (HICSS). IEEE (2012)Google Scholar
  9. 9.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)CrossRefGoogle Scholar
  10. 10.
    Gharib, M., Giorgini, P.: Modeling and reasoning about information quality requirements in business processes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 231–245. Springer, Cham (2015). doi: 10.1007/978-3-319-19237-6_15 CrossRefGoogle Scholar
  11. 11.
    Heravizadeh, M., Mendling, J., Rosemann, M.: Dimensions of business processes quality (QoBP). In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 80–91. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00328-8_8 CrossRefGoogle Scholar
  12. 12.
    Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the tropos methodology. Int. J. Softw. Eng. Knowl. Eng. 17(02), 285–309 (2007)CrossRefGoogle Scholar
  13. 13.
    Orr, K.: Data quality and systems theory. Commun. ACM 41(2), 66–71 (1998)CrossRefGoogle Scholar
  14. 14.
    Rodríguez, A., Caro, A., Cappiello, C., Caballero, I.: A BPMN extension for including data quality requirements in business process modeling. In: Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 116–125. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33155-8_10 CrossRefGoogle Scholar
  15. 15.
    Russell, N., Aalst, W., Hofstede, A.: Workflow exception patterns. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer, Heidelberg (2006). doi: 10.1007/11767138_20 CrossRefGoogle Scholar
  16. 16.
    Sadiq, S., Orlowska, M., Sadiq, W., Foulger, C.: Data flow and validation in workflow modeling. In: Proceedings of the 15th Australasian Database Conference, ADC 2004, vol. 27, pp. 207–214 (2004)Google Scholar
  17. 17.
    Shankaranarayanan, G., Wang, R.Y., Ziad, M.: IP-MAP: representing the manufacture of an information product. IQ 2000Google Scholar
  18. 18.
    Sidorova, N., Stahl, C., Trčka, N.: Workflow soundness revisited: checking correctness in the presence of data while staying conceptual. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 530–544. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13094-6_40 CrossRefGoogle Scholar
  19. 19.
    Soffer, P., Wand, Y.: On the notion of soft goals in business process modeling. Bus. Process Manage. J. 11(6), 663–679 (2005)Google Scholar
  20. 20.
    Soffer, P., Kaner, M., Wand, Y.: Assigning ontological meaning to workflow nets. J. Database Manage. 21(3), 1–35 (2010)CrossRefGoogle Scholar
  21. 21.
    Soffer, P.: Mirror, mirror on the wall, can i count on you at all? Exploring data inaccuracy in business processes. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS/EMMSAD -2010. LNBIP, vol. 50, pp. 14–25. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13051-9_2 CrossRefGoogle Scholar
  22. 22.
    Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Commun. ACM 39(11), 86–95 (1996)CrossRefGoogle Scholar
  23. 23.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst. 12(4), 5–33 (1996)Google Scholar
  24. 24.
    Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw. Eng. Methodol. (TOSEM) 6(1), 1–30 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of HaifaHaifaIsrael

Personalised recommendations