Towards a Data-Driven Framework for Measuring Process Performance

  • Isabella KisEmail author
  • Stefan Bachhofner
  • Claudio Di Ciccio
  • Jan Mendling
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 287)


Studies have shown that the focus of Business Process Management (BPM) mainly lies on process discovery and process implementation & execution. In contrast, process analysis, i.e., the measurement of process performance, has been mostly neglected in the field of process science so far. However, in order to be viable in the long run, a process’ performance has to be made evaluable. To enable this kind of analysis, the suggested approach in this idea paper builds upon the well-established notion of devil’s quadrangle. The quadrangle depicts the process performance according to four dimensions (time, cost, quality and flexibility), thus allowing for a meaningful assessment of the process. In the course of this paper, a framework for the measurement of each dimension is proposed, based on the analysis of process execution data. A trailing example is provided that reflects the expressed concepts on a tangible realistic scenario.


Business processes Process analytics Devil’s quadrangle 


  1. 1.
    van der Aalst, W.M.P.: Business process simulation revisited. In: Barjis, J. (ed.) EOMAS 2010. LNBIP, vol. 63, pp. 1–14. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15723-3_1 CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M., Rosemann, M., Dumas, M.: Deadline-based escalation in process-aware information systems. Decis. Support Syst. 43(2), 492–511 (2007)CrossRefGoogle Scholar
  3. 3.
    Dickmann, P.: Schlanker Materialfluss: mit Lean Production, Kanban und Innovationen, 3rd edn. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  4. 4.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, New York (2013)CrossRefGoogle Scholar
  5. 5.
    Gong, Y., Janssen, M.: Measuring process flexibility and agility. In: ICEGOV, pp. 173–182. ACM (2010)Google Scholar
  6. 6.
    Horsch, J.: Kostenrechnung: Klassische und neue Methoden in der Unternehmenspraxis. Springer-Verlag (2015)Google Scholar
  7. 7.
    Houy, C., Fettke, P., Loos, P., van der Aalst, W.M.P., Krogstie, J.: BPM-in-the-large – towards a higher level of abstraction in business process management. In: Janssen, M., Lamersdorf, W., Pries-Heje, J., Rosemann, M. (eds.) EGES/GISP -2010. IAICT, vol. 334, pp. 233–244. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15346-4_19
  8. 8.
    Jansen-Vullers, M., Loosschilder, M., Kleingeld, P., Reijers, H.: Performance measures to evaluate the impact of best practices. In: BPMDS Workshop, vol. 1, pp. 359–368. Tapir Academic Press Trondheim (2007)Google Scholar
  9. 9.
    Knoll, K., Jarvenpaa, S.L.: Information technology alignment or “fit” in highly turbulent environments: the concept of flexibility. In: SIGCPR, pp. 1–14. ACM (1994)Google Scholar
  10. 10.
    Kronz, A.: Managing of process key performance indicators as part of the aris methodology. In: Corporate Performance Management, pp. 31–44. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Kueng, P.: Process performance measurement system: a tool to support process-based organizations. Total Qual. Manag. 11(1), 67–85 (2000)CrossRefGoogle Scholar
  12. 12.
    Kumar, R.L., Stylianou, A.C.: A process model for analyzing and managing flexibility in information systems. Eur. J. Inform. Syst. 23(2), 151–184 (2014)CrossRefGoogle Scholar
  13. 13.
    Müller, T.: Zukunftsthema Geschäftsprozessmanagement. Technical report, PricewaterhouseCoopers AG Wirtschaftsprüfungsgesellschaft (2011)Google Scholar
  14. 14.
    Nguyen, H., Dumas, M., ter Hofstede, A.H.M., La Rosa, M., Maggi, F.M.: Business process performance mining with staged process flows. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 167–185. Springer, Cham (2016). doi: 10.1007/978-3-319-39696-5_11 Google Scholar
  15. 15.
    Parasuraman, A., Zeithaml, V.A., Berry, L.L.: Servqual: a multiple-item scale for measuring consumer perc. J. Retail. 64(1), 12 (1988)Google Scholar
  16. 16.
    Recker, J., Mendling, J.: The state of the art of business process management research as published in the BPM conference. Bus. Inform. Syst. Eng. 58(1), 55–72 (2016)CrossRefGoogle Scholar
  17. 17.
    Regev, G., Wegmann, A.: A regulation-based view on business process and supporting system flexibility. In: CAiSE, vol. 5, pp. 91–98. Springer (2005)Google Scholar
  18. 18.
    Stephens, S.: Supply chain operations reference model version 5.0: a new tool to improve supply chain efficiency and achieve best practice. Inform. Syst. Front. 3(4), 471–476 (2001)CrossRefGoogle Scholar
  19. 19.
    Van der Aalst, W.M.P.: Business process management: A comprehensive survey. ISRN Software Engineering 2013 (2013)Google Scholar
  20. 20.
    Venkatraman, N., Ramanujam, V.: Measurement of business performance in strategy research: a comparison of approaches. Acad. Manag. Rev. 11(4), 801–814 (1986)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Isabella Kis
    • 1
    Email author
  • Stefan Bachhofner
    • 1
  • Claudio Di Ciccio
    • 1
  • Jan Mendling
    • 1
  1. 1.Vienna University of Economics and BusinessViennaAustria

Personalised recommendations