Skip to main content

One Mesh to Rule Them All: Registration-Based Personalized Cardiac Flow Simulations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10263))

Abstract

The simulation of cardiac blood flow using patient-specific geometries can help for the diagnosis and treatment of cardiac diseases. Current patient-specific cardiac flow simulations requires a significant amount of human expertise and time to pre-process image data and obtain a case ready for simulations. A new procedure is proposed to alleviate this pre-processing by registering a unique generic mesh on patient-specific cardiac segmentations and transferring appropriately the spatiotemporal dynamics of the ventricle. The method is applied on real patient data acquired from 3D ultrasound imaging. Both a healthy and a pathological conditions are simulated. The resulting simulations exhibited physiological flow behavior in cardiac cavities. The experiments confirm a significant reduction in pre-processing work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.3dscience.com.

  2. 2.

    http://www.salome-platform.org.

  3. 3.

    http://felisce.gforge.inria.fr.

References

  1. Mittal, R., Seo, J.H., Vedula, V., Choi, Y.J., Liu, H., Huang, H.H., George, R.T.: Computational modeling of cardiac hemodynamics: current status and future outlook. J. Comput. Phys. 305, 1065–1082 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chnafa, C., Mendez, S., Nicoud, F.: Image-based large-eddy simulation in a realistic left heart. Comput. Fluids 94, 173–187 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bavo, A.M., Pouch, A.M., Degroote, J., Vierendeels, J., Gorman, J.H., Gorman, R.C., Segers, P.: Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging. Biomed. Eng. OnLine 15(1), 107–122 (2016)

    Article  Google Scholar 

  4. Astorino, M., Hamers, J., Shadden, S.C., Gerbeau, J.-F.: A robust and efficient valve model based on resistive immersed surfaces. Int. J. Numer. Meth. Biomed. Eng. 28(9), 937–959 (2012)

    Article  MathSciNet  Google Scholar 

  5. Ranganathan, N., Lam, J.H., Wigle, E.D., Silver, M.D.: Morphology of the human mitral valve. II. The valve leaflets. Circulation 41(3), 459–467 (1970)

    Article  Google Scholar 

  6. Votta, E., Caiani, E., Veronesi, F., Soncini, M., Montevecchi, F.M., Redaelli, A.: Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. Ser. A Math. Phys. Eng. Sci. 366(1879), 3411–3434 (2008)

    Article  Google Scholar 

  7. Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouv, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101(8), 35–49 (2014)

    Article  Google Scholar 

  8. Lambert, A.S.: Proximal isovelocity surface area should be routinely measured in evaluating mitral regurgitation: a core review. Anesth. Analg. 105(4), 940–943 (2007)

    Article  Google Scholar 

  9. Hong, G.R., Pedrizzetti, G., Tonti, G., Li, P., Wei, Z., Kim, J.K., Vannan, M.A.: Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc. Imaging 1(6), 705–717 (2008)

    Article  Google Scholar 

  10. This, A., Morales, H.G., Bonnefous, O.: Proximal isovelocity surface for different mitral valve hole geometries. In: ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering 1, pp. 155–163 (2016)

    Google Scholar 

  11. Couteau, B., Payan, Y., Lavallée, S.: The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures. J. Biomech. 33(8), 1005–1009 (2000)

    Article  Google Scholar 

  12. Bucki, M., Lobos, C., Payan, Y.: A fast and robust patient specific finite element mesh registration technique: application to 60 clinical cases. Med. Image Anal. 14(3), 303–317 (2010)

    Article  Google Scholar 

  13. Doost, S., Ghista, D., Su, B., Zhong, S., Morsi, Y.: Heart blood flow simulation a perspective review. Biomed. Eng. Online 15(1), 101 (2016)

    Article  Google Scholar 

  14. Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid-structure interactions with large displacements. J. Appl. Mech. 70(1), 58 (2003)

    Article  MATH  Google Scholar 

  15. Landajuela, M., Vidrascu, M., Chapelle, D., Fernández, M.A.: Coupling schemes for the FSI forward prediction challenge: comparative study and validation. Int. J. Numer. Meth. Biomed. Eng. (2016)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mathieu De Craene, Èric Lluch and Hélène Langet from Philips Reasearch - Medisys for their support in acquiring patient data and their use, as well as for reviewing the presented manuscript. We would like to also acknowledge the help of INRIA - M3DISIM research team for sharing with us pressure curves generated from complex electro-mechanical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre This .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

This, A. et al. (2017). One Mesh to Rule Them All: Registration-Based Personalized Cardiac Flow Simulations. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics