Skip to main content

Improving the Spatial Solution of Electrocardiographic Imaging: A New Regularization Parameter Choice Technique for the Tikhonov Method

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10263))

Abstract

The electrocardiographic imaging (ECGI) inverse problem is highly ill-posed and regularization is needed to stabilize the problem and to provide a unique solution. When Tikhonov regularization is used, choosing the regularization parameter is a challenging problem. Mathematically, a suitable value for this parameter needs to fulfill the Discrete Picard Condition (DPC). In this study, we propose two new methods to choose the regularization parameter for ECGI with the Tikhonov method: (i) a new automatic technique based on the DPC, which we named ADPC, and (ii) the U-curve method, introduced in other fields for cases where the well-known L-curve method fails or provides an over-regularized solution, and not tested yet in ECGI. We calculated the Tikhonov solution with the ADPC and U-curve parameters for in-silico data, and we compared them with the solution obtained with other automatic regularization choice methods widely used for the ECGI problem (CRESO and L-curve). ADPC provided a better correlation coefficient of the potentials in time and of the activation time (AT) maps, while less error was present in most of the cases compared to the other methods. Furthermore, we found that for in-silico spiral wave data, the L-curve method over-regularized the solution and the AT maps could not be solved for some of these cases. U-curve and ADPC provided the best solutions in these last cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shah, A.: Frontiers in noninvasive cardiac mapping, an issue of cardiac electrophysiology clinics. Elsevier Health Sci. 7(1), 1–164 (2015)

    Google Scholar 

  2. Rudy, Y.: Noninvasive electrocardiographic imaging of arrhytmogenic substrates in humans. Circ. Res. 112, 849–862 (2013)

    Article  Google Scholar 

  3. Wang, Y., et al.: Noninvasive electro anatomic mapping of human ventricular arrhythmias with electrocardiographic imaging. Sci. Transl. Med. 3(98), 98ra84 (2011)

    Article  Google Scholar 

  4. Ramanathan, C., et al.: Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 10(4), 422–428 (2004)

    Article  Google Scholar 

  5. Dubois, R., et al.: Non-invasive cardiac mapping in clinical practice: Application to the ablation of cardiac arrhythmias. J. Electrocardiol. 48(6), 966–974 (2015)

    Article  Google Scholar 

  6. Haissaguerre, M., et al.: Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. J. Cardiovasc. Electrophysiol. 24, 711–717 (2013)

    Article  Google Scholar 

  7. Cochet, H., et al.: Cardiac arrythmias: multimodal assessment integrating body surface ECG mapping into cardiac imaging. Radiology 271(1), 239–247 (2014)

    Article  Google Scholar 

  8. Cluitmans, M.J.M., et al.: Noninvasive reconstruction of cardiac electrical activity: update on current methods, applications and challenges. Neth. Heart J. 23(6), 301–311 (2015)

    Article  Google Scholar 

  9. Wang, Y., Rudy, Y.: Application of the method of fundamental solutions to potential-based inverse electrocardiography. Ann. Biomed. Eng. 34, 1272–1288 (2006)

    Article  Google Scholar 

  10. Rudy, Y.: U.S. Patent No. 6,772,004. U.S. Patent and Trademark Office, Washington, DC (2004)

    Google Scholar 

  11. Milanič, M., et al.: Assessment of regularization techniques for electrocardiographic imaging. J. Electrocardiol. 47(1), 20–28 (2014)

    Article  Google Scholar 

  12. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms, vol. 7. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  13. Tsai, C.C., et al.: Investigations on the accuracy and condition number for the method of fundamental solutions. Comput. Model. Eng. Sci. 16(2), 103 (2006)

    Google Scholar 

  14. Colli-Franzone, P., et al.: A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data. Math. Biosci. 77(1–2), 353–396 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ruan, S., Wolkowicz, G.S.K., Wu, J. (eds.): Differential Equations with Applications to Biology, vol. 21. American Mathematical Society, Providence (1999)

    Google Scholar 

  16. Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krawczyk-Stańdo, D., Rudnicki, M.: Regularization parameter selection in discrete ill-posed problems—the use of the U-curve. Int. J. Appl. Math. Comput. Sci. 17(2), 157–164 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Chamorro-Servent, J., et al.: Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies. Opt. Express 19(12), 11490–11506 (2011)

    Article  Google Scholar 

  19. Duchateau, J., Potse, M., Dubois, R.: Spatially coherent activation maps for electrocardiographic imaging. IEEE Trans. Biomed. Eng. (2016, in print)

    Google Scholar 

  20. Ten Tusscher, K.H.W.J., et al.: A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286(4), H1573–H1589 (2004)

    Article  Google Scholar 

  21. Potse, M., et al.: Cardiac anisotropy in boundary-element models for the electrocardiogram. Med. Biol. Eng. Compu. 47(7), 719–729 (2009)

    Article  Google Scholar 

  22. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghodrati, A., et al.: Wavefront-based models for inverse electrocardiography. IEEE Trans. Biomed. Eng. 53(9), 1821–1831 (2006)

    Article  Google Scholar 

  24. Chamorro-Servent, J., et al.: Adaptive placement of the pseudo-boundaries improves the conditioning of the inverse problem. Comput. Cardiol. 43, 705–708 (2016)

    Google Scholar 

Download references

Acknowledgements

This study received financial support from the French Government under the “Investments of the Future” program managed by the National Research Agency (ANR), Grant reference ANR-10-IAHU-04 and from the Conseil Régional Aquitaine as part of the project “Assimilation de données en cancérologie et cardiologie”. This work was granted access to the HPC resources of TGCC under the allocation x2016037379 made by GENCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Chamorro-Servent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chamorro-Servent, J., Dubois, R., Potse, M., Coudière, Y. (2017). Improving the Spatial Solution of Electrocardiographic Imaging: A New Regularization Parameter Choice Technique for the Tikhonov Method. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics