Skip to main content

Variance Based Sensitivity Analysis of \(I_{Kr}\) in a Model of the Human Atrial Action Potential Using Gaussian Process Emulators

  • Conference paper
  • First Online:
Functional Imaging and Modelling of the Heart (FIMH 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10263))

Abstract

Cardiac cell models have become valuable research tools, but biophysically detailed models embed large numbers of parameters, which must be fitted from experimental data. The provenance of these parameters can be difficult to establish, and so it is important to understand how parameter values influence model behaviour. In this study we examined how model parameters influence the repolarising current \(I_{Kr}\) in the Courtemenache-Ramirez-Nattel model of the human atrial action potential. We used a statistical approach in which Gaussian processes (GP) are used to emulate the model outputs. A GP emulator can treat model inputs and outputs as uncertain, and so can be used to directly calculate sensitivity indices. We found that 3 of the 10 parameters influencing \(I_{Kr}\) had a strong influence on \(APD_{70}\), \(APD_{90}\), and DomeĀ \(V_m\). These three parameters scale the magnitude of the \(I_{Kr}\) gating variable time constant and the voltage dependence of the steady state activation curve, and these mechanisms act to modify the amplitude of \(I_{Kr}\) during repolarisation. This study highlights the potential value of statistical approaches for investigating cardiac models, and that uncertainties or errors in parameters resulting from attempts to fit experimental data during model development can ultimately affect model behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bastos, L.S., Oā€™Hagan, A.: Diagnostics for Gaussian process emulators. Technometrics 51(4), 425ā€“438 (2009)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Britton, O.J., Bueno-Orovio, A., Van Ammel, K., Lu, H.R., Towart, R., Gallacher, D.J., RodrĆ­guez, B.: Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proc. Nat. Acad. Sci. U.S.A. 110(23), E2098ā€“E2105 (2013)

    ArticleĀ  Google ScholarĀ 

  3. Chang, E.T.Y., Strong, M., Clayton, R.H.: Bayesian sensitivity analysis of a cardiac cell model using a Gaussian process emulator. PLoS ONE 10(6), e0130252 (2015)

    ArticleĀ  Google ScholarĀ 

  4. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301ā€“H321 (1998)

    Google ScholarĀ 

  5. Fink, M., Niederer, S.A., Cherry, E.M., Fenton, F.H., Koivumaki, J.T., Seemann, G., Thul, R., Zhang, H., Sachse, F.B., Crampin, E.J., Smith, N.P.: Cardiac cell modelling: observations from the heart of the cardiac physiome project. Prog. Biophys. Mol. Biol. 104, 2ā€“21 (2011)

    ArticleĀ  Google ScholarĀ 

  6. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500ā€“544 (1952)

    ArticleĀ  Google ScholarĀ 

  7. Johnstone, R.H., Chang, E.T.Y., Bardenet, R., de Boer, T.P., Gavaghan, D.J., Pathmanathan, P., Clayton, R.H., Mirams, G.R.: Uncertainty and variability in models of the cardiac action potential: can we build trustworthy models? J. Mol. Cell. Cardiol. 96, 49ā€“62 (2015)

    ArticleĀ  Google ScholarĀ 

  8. Lee, L.A., Carslaw, K.S., Pringle, K.J., Mann, G.W., Spracklen, D.V.: Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters. Atmos. Chem. Phys. 11(23), 12253ā€“12273 (2011)

    ArticleĀ  Google ScholarĀ 

  9. Lee, Y.S., Hwang, M., Song, J.S., Li, C., Joung, B., Sobie, E.A., Pak, H.N.: The contribution of ionic currents to rate-dependent action potential duration and pattern of reentry in a mathematical model of human atrial fibrillation. PLoS ONE 11(3), 1ā€“17 (2016)

    Google ScholarĀ 

  10. Loewe, A., Wilhelms, M., Schmid, J., Krause, M.J., Fischer, F., Thomas, D., Scholz, E.P., Dƶssel, O., Seemann, G.: Parameter estimation of ion current formulations requires hybrid optimization approach to be both accurate and reliable. Front. Bioeng. Biotechnol. 3, 209 (2015)

    Google ScholarĀ 

  11. Niederer, S.A., Fink, M., Noble, D., Smith, N.P.: A meta-analysis of cardiac electrophysiology computational models. Exp. Physiol. 94(5), 486ā€“495 (2009)

    ArticleĀ  Google ScholarĀ 

  12. Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J. Physiol. (London) 160(2), 317ā€“352 (1962)

    ArticleĀ  Google ScholarĀ 

  13. Oakley, J.E., Oā€™Hagan, A.: Probabilistic sensitivity analysis of complex models: a Bayesian approach. J. Roy. Stat. Soc. Ser. B (Stat. Method.) 66(3), 751ā€“769 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. Pathmanathan, P., Shotwell, M.S., Gavaghan, D.J., Cordeiro, J.M., Gray, R.A.: Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology. Prog. Biophys. Mol. Biol. 117(1), 1ā€“15 (2015)

    ArticleĀ  Google ScholarĀ 

  15. SƔnchez, C., Bueno-Orovio, A., Wettwer, E., Loose, S., Simon, J., Ravens, U., Pueyo, E., Rodriguez, B.: Inter-subject variability in human atrial action potential in sinus rhythm versus chronic atrial fibrillation. PLoS ONE 9(8), e105897 (2014)

    ArticleĀ  Google ScholarĀ 

  16. Sarkar, A.X., Christini, D.J., Sobie, E.A.: Exploiting mathematical models to illuminate electrophysiological variability between individuals. J. Physiol. 590(Pt 11), 2555ā€“2567 (2012)

    ArticleĀ  Google ScholarĀ 

  17. Vernon, I., Goldstein, M., Bower, R.G.: Galaxy formation: a Bayesian uncertainty analysis. Bayesian Anal. 5(4), 619ā€“669 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Wilhelms, M., Hettmann, H., Maleckar, M.M., KoivumƤki, J.T., Dƶssel, O., Seemann, G.: Benchmarking electrophysiological models of human atrial myocytes. Front. Physiol. 3, 487 (2012)

    Google ScholarĀ 

Download references

Acknowledgements

This work was funded by the UK EPSRC through grant number EP/K037145/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Clayton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chang, E.T.Y., Coveney, S., Clayton, R.H. (2017). Variance Based Sensitivity Analysis of \(I_{Kr}\) in a Model of the Human Atrial Action Potential Using Gaussian Process Emulators. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics