Skip to main content

Real-Time Guiding Catheter and Guidewire Detection for Congenital Cardiovascular Interventions

  • Conference paper
  • First Online:
Functional Imaging and Modelling of the Heart (FIMH 2017)

Abstract

Guiding catheters and guidewires are used extensively in pediatric cardiac catheterization procedures for congenital heart diseases (CHD). Detecting their positions in fluoroscopic X-ray images is important for several clinical applications, such as visibility enhancement for low dose X-ray images, and co-registration between 2D and 3D imaging modalities. As guiding catheters are made from thin plastic tubes, they can be deformed by cardiac and breathing motions. Therefore, detection is the essential step before automatic tracking of guiding catheters in live X-ray fluoroscopic images. However, there are several wire-like artifacts existing in X-ray images, which makes developing a real-time robust detection method very challenging. To solve those challenges in real-time, a localized machine learning algorithm is built to distinguish between guiding catheters and artifacts. As the machine learning algorithm is only applied to potential wire-like objects, which are obtained from vessel enhancement filters, the detection method is fast enough to be used in real-time applications. The other challenge is the low contrast between guiding catheters and background, as the majority of X-ray images are low dose. Therefore, the guiding catheter might be detected as a discontinuous curve object, such as a few disconnected line blocks from the vessel enhancement filter. A minimum energy method is developed to trace the whole wire object. Finally, the proposed methods are tested on 1102 images which are from 8 image sequences acquired from 3 clinical cases. Results show an accuracy of 0.87 ± 0.53 mm which is measured as the error distances between the detected object and the manually annotated object. The success rate of detection is 83.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)

    Article  Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1987)

    Article  Google Scholar 

  3. Zhu, S.C., Yuille, A.L.: Forms: a flexible object recognition and modeling system. Int. J. Comput. Vision 20, 187–212 (1996)

    Article  Google Scholar 

  4. Palti-Wasserman, D., Brukstein, A.M., Beyar, R.: Identifying and tracking a guide wire in the coronary arteries during angioplasty from x-ray images. IEEE Trans. Biomed. Eng. 44(2), 152–164 (1997)

    Article  Google Scholar 

  5. Baert, S.A.M., Viergever, M.A., Niessen, W.J.: Guide wire tracking during endovascular interventions. IEEE Trans. Med. Imaging 22(8), 965–972 (2003)

    Article  MATH  Google Scholar 

  6. Barbu, A., Athitsos, V., Georgescu, B., Boehm, S., Durlak, P., Comaniciu, D.: Hierarchical learning of curves application to guidewire localization in fluoroscopy. In: CVPR (2007)

    Google Scholar 

  7. Wang, P., Chen, T., Zhu, Y., Zhang, W., Zhou, S.K., Comaniciu, D.: Robust guidewire tracking in fluoroscopy. In: CVPR (2009)

    Google Scholar 

  8. Pauly, O., Heibel, H., Navab, N.: A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 343–350. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15711-0_43

    Chapter  Google Scholar 

  9. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  10. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  11. Fazlali, H.R., et al.: Vessel region detection in coronary X-ray angiograms. In: International Conference on Image Processing (2015)

    Google Scholar 

  12. Ma, Y.L., Gogin, N., Cathier, P., Housden, R.J., Gijsbers, G., Cooklin, M., O’Neill, M., Gill, J., Rinaldi, C.A., Razavi, R., Rhode, K.S.: Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions. Med. Phys. 40(7), 071902 (2013)

    Article  Google Scholar 

  13. Hecht, E.: Optics, 4th edn. Addison Wesley, San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingLiang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ma, Y. et al. (2017). Real-Time Guiding Catheter and Guidewire Detection for Congenital Cardiovascular Interventions. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics