Skip to main content

Strain-Based Parameters for Infarct Localization: Evaluation via a Learning Algorithm on a Synthetic Database of Pathological Hearts

  • Conference paper
  • First Online:
Functional Imaging and Modelling of the Heart (FIMH 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10263))

Abstract

Localization of infarcted regions is essential to determine the most appropriate treatment for patients with cardiac ischemia. Myocardial strain partially reflects the location of infarcted regions, which demonstrated potential use in clinical practice. However, strain patterns are complex and simple thresholding is not sufficient to locate the infarcts. Besides, many strain-based parameters exist and their sensitivities to myocardial infarcts have not been directly investigated. In our study, we propose to evaluate nine strain-based parameters to locate infarcted regions. For this purpose, we designed a large database (n = 200) of synthetic pathological finite-element heart models from 5 real healthy left ventricle geometries. The infarcts were incorporated with random location, shape and degree of severity. In addition, we used a state-of-the-art learning algorithm to link deformation patterns and infarct location. Based on our evaluation, we propose to sort the strain-based parameters into three groups according to their performances in locating infarcts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.3ds.com/products-services/simulia/products/abaqus/.

References

  1. Antoni, M.L., Mollema, S.A., Delgado, V., Atary, J.Z., Borleffs, C.J., Boersma, E., Holman, E.R., van der Wall, E.E., Schalij, M.J., Bax, J.J.: Prognostic importance of strain and strain rate after acute myocardial infarction. Eur. Heart J. 31, 1640–1647 (2010)

    Article  Google Scholar 

  2. Bleton, H., Margeta, J., Lombaert, H., Delingette, H., Ayache, N.: Myocardial infarct localization using neighbourhood approximation forests. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2015. LNCS, vol. 9534, pp. 108–116. Springer, Cham (2016). doi:10.1007/978-3-319-28712-6_12

    Chapter  Google Scholar 

  3. Dandel, M., Lehmkuhl, H., Knosalla, C., Suramelashvili, N., Hetzer, R.: Strain and strain rate imaging by echocardiography - basic concepts and clinical applicability. Curr. Cardiol. Rev. 5(2), 133–148 (2009)

    Article  Google Scholar 

  4. Duchateau, N., De Craene, M., Allain, P., Saloux, E., Sermesant, M.: Infarct localization from myocardial deformation: prediction and uncertainty quantification by regression from a low-dimensional space. IEEE Trans. Med. Imaging 35(10), 2340–2353 (2016)

    Article  Google Scholar 

  5. Flachskampf, F.A., Schmid, M., Rost, C., Achenbach, S., DeMaria, A.N., Daniel, W.G.: Cardiac imaging after myocardial infarction. Eur. Heart J. 32(3), 272–283 (2011)

    Article  Google Scholar 

  6. Genet, M., Lee, L.C., Nguyen, R., Haraldsson, H., Acevedo-Bolton, G., Zhang, Z., Ge, L., Ordovas, K., Kozerke, S., Guccione, J.M.: Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J. Appl. Physiol. 117, 142–152 (2014)

    Article  Google Scholar 

  7. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally-based framework for material characterization. Phil. Trans. R. Soc. A 367, 3445–3475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Klotz, S., Hay, H., Dickstein, M.L., Yi, G.H., Wang, J., Maurer, M.S., Kass, D.A., Burkhoff, D.: Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol. Heart Circ. Physiol. 291, H403–H412 (2006)

    Article  Google Scholar 

  9. Medrano-Garcia, P., Zhang, X., Suinesiaputra, A., Cowan, B., Young, A.A.: Statistical shape modelling of the left ventricle: myocardial infarct classification challenge. In: MICCAI - STACOM 2015

    Google Scholar 

  10. Ortiz-Pérez, J.T., Rodriguez, J., Meyers, S.N., Lee, D.C., Davidson, C., Wu, E.: Correspondence between the 17-segment model and coronary arteryal anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc. Imaging 1(3), 282–293 (2008)

    Article  Google Scholar 

  11. Rumindo, G.K., Ohayon, J., Viallon, M., Stuber, M., Croisille, P., Clarysse, P.: Comparison of different strain-based parameters to identify human left ventricular myocardial infarct during diastole: a 3D finite element study. In: CMBBE 2016, Tel Aviv, Israel

    Google Scholar 

  12. Sjøli, B., Ørn, S., Grenne, B., Ihlen, H., Edvardsen, T., Brunvand, H.: Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Caridovasc. Imaging 2, 24–33 (2009)

    Article  Google Scholar 

  13. Soleimanifard, S., Abd-Elmoniem, K.Z., Agarwal, H.K., Tomas, M.S., Sasano, T., Vonken, E., Youssef, A., Abraham, M.R., Abraham, T.P., Prince, J.L.: Identification of myocardial infarction using three-dimensional strain tensor fractional anisotropy. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 468–471 (2010)

    Google Scholar 

  14. Wang, H., Amini, A.A.: Cardiac motion and deformation recovery from MRI: a review. IEEE Trans. Med. Imaging 31(2), 487–503 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

GK Rumindo is supported by the European Commission H2020 Marie Sklodowska-Curie European Training Network VPH-CaSE (www.vph-case.eu), grant agreement No 642612. This work was performed within the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR); and the IMPULSION project from the Programme Avenir Lyon - St. Etienne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Kenny Rumindo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rumindo, G.K., Duchateau, N., Croisille, P., Ohayon, J., Clarysse, P. (2017). Strain-Based Parameters for Infarct Localization: Evaluation via a Learning Algorithm on a Synthetic Database of Pathological Hearts. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics