Skip to main content

Image Segmentation and Modeling of the Pediatric Tricuspid Valve in Hypoplastic Left Heart Syndrome

  • Conference paper
  • First Online:
Book cover Functional Imaging and Modelling of the Heart (FIMH 2017)

Abstract

Hypoplastic left heart syndrome (HLHS) is a single-ventricle congenital heart disease that is fatal if left unpalliated. In HLHS patients, the tricuspid valve is the only functioning atrioventricular valve, and its competence is therefore critical. This work demonstrates the first automated strategy for segmentation, modeling, and morphometry of the tricuspid valve in transthoracic 3D echocardiographic (3DE) images of pediatric patients with HLHS. After initial landmark placement, the automated segmentation step uses multi-atlas label fusion and the modeling approach uses deformable modeling with medial axis representation to produce patient-specific models of the tricuspid valve that can be comprehensively and quantitatively assessed. In a group of 16 pediatric patients, valve segmentation and modeling attains an accuracy (mean boundary displacement) of 0.8 ± 0.2 mm relative to manual tracing and shows consistency in annular and leaflet measurements. In the future, such image-based tools have the potential to improve understanding and evaluation of tricuspid valve morphology in HLHS and guide strategies for patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon, B.M., Rodriguez, S., Lee, M., Chang, R.K.: Decreasing number of deaths of infants with hypoplastic left heart syndrome. J. Pediatr. 153(3), 354 (2008)

    Article  Google Scholar 

  2. Reller, M.D., Strickland, M.J., Riehle-Colarusso, T., Mahle, W.T., Correa, A.: Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J. Pediatr. 153(6), 807 (2008)

    Article  Google Scholar 

  3. Barber, G., Helton, J.G., Aglira, B.A., Chin, A.J., Murphy, J.D., Pigott, J.D., Norwood, W.I.: The significance of tricuspid regurgitation in hypoplastic left-heart syndrome. Am. Heart J. 116, 1563–1567 (1988)

    Article  Google Scholar 

  4. Elmi, M., Hickey, E.J., Williams, W.G., Van Arsdell, G., Caldarone, C.A., McCrindle, B.W.: Long-term tricuspid valve function after Norwood operation. J. Thorac. Cardiovasc. Surg. 142, 1341–1347 (2011). e4

    Article  Google Scholar 

  5. Kutty, S., Colen, T., Thompson, R.B., Tham, E., Li, L., Vijarnsorn, C., Polak, A., Truong, D.T., Danford, D.A., Smallhorn, J.F., Khoo, N.S.: Tricuspid regurgitation in hypoplastic left heart syndrome. Circ. Cardiovasc. Imaging 7, 765–772 (2014)

    Article  Google Scholar 

  6. Bharucha, T., Honjo, O., Seller, N., Atlin, C., Redington, A., Caldarone, C.A., van Arsdell, G., Mertens, L.: Mechanisms of tricuspid valve regurgitation in hypoplastic left heart syndrome: a case-matched echocardiographic-surgical comparison study. Eur. Heart J. Cardiovasc. Imaging 14, 135–141 (2013)

    Article  Google Scholar 

  7. Takahashi, K., Mackie, A.S., Rebeyka, I.M., Ross, D.B., Robertson, M., Dyck, J.D., Inage, A., Smallhorn, J.F.: Two-dimensional versus transthoracic real-time three-dimensional echocardiography in the evaluation of the mechanisms and sites of atrioventricular valve regurgitation in a congenital heart disease population. J. Am. Soc. Echocardiogr. 23, 726–734 (2010)

    Article  Google Scholar 

  8. Badano, L.P., Agricola, E., Perez de Isla, L., Gianfagna, P., Zamorano, J.L.: Evaluation of the tricuspid valve morphology and function by transthoracic real-time three-dimensional echocardiography. Eur. J. Echocardiogr. 10, 477–484 (2009)

    Article  Google Scholar 

  9. Anwar, A.M., Geleijnse, M.L., Soliman, O.I., McGhie, J.S., Frowijn, R., Nemes, A., van den Bosch, A.E., Galema, T.W., Ten Cate, F.J.: Assessment of normal tricuspid valve anatomy in adults by real-time three-dimensional echocardiography. Int. J. Cardiovasc. Imaging 23, 717–724 (2007)

    Article  Google Scholar 

  10. Pouch, A.M., Wang, H., Takabe, M., Jackson, B.M., Gorman 3rd, J.H., Gorman, R.C., Yushkevich, P.A., Sehgal, C.M.: Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med. Image Anal. 18, 118–129 (2014)

    Article  Google Scholar 

  11. Pouch, A.M., Tian, S., Takebe, M., Yuan, J., Gorman, R., Cheung, A.T., Wang, H., Jackson, B.M., Gorman, J.H., Gorman, R.C., Yushkevich, P.A.: Medially constrained deformable modeling for segmentation of branching medial structures: application to aortic valve segmentation and morphometry. Med. Image Anal. 26, 217–231 (2015)

    Article  Google Scholar 

  12. Jassar, A.S., Vergnat, M., Jackson, B.M., McGarvey, J., Cheung, A.T., Ferrari, G., Woo, Y.J., Acker, M.A., Gorman, R.C., Gorman III, J.H.: Regional annular geometry in patients with mitral regurgitation: Implications for annuloplasty ring selection. Ann. Thorac. Surg. 97(1), 64–70 (2014)

    Article  Google Scholar 

  13. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F.M., Sonka, M., Buatti, J., Aylward, S.R., Miller, J.V., Pieper, S., Kikinis, R.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  14. Wang, H., Suh, J.W., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 611–623 (2013)

    Article  Google Scholar 

  15. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  16. Yushkevich, P.A., Zhang, H., Gee, J.C.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imaging 25(12), 1547–1564 (2006)

    Article  Google Scholar 

  17. Fukuda, S., Saracino, G., Matsumura, Y., Daimon, M., Tran, H., Greenberg, N.L., Hozumi, T., Yoshikawa, J., Thomas, J.D., Shiota, T.: Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation. Circulation 114(suppl I), I-492–I-498 (2006)

    Google Scholar 

  18. Sluysmans, T., Colan, D.: Theoretical and empirical derivation of cardiovascular allometric relationships in children. J. Appl. Physiol. 99, 445–457 (2005)

    Article  Google Scholar 

  19. Ionasec, R.I., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Vega-Higuera, F., Navab, N., Comaniciu, D.: Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans. Med. Imaging 29, 1636–1651 (2010)

    Article  Google Scholar 

  20. Schneider, R.J., Tenenholtz, N.A., Perrin, D.P., Marx, G.R., del Nido, P.J., Howe, R.D.: Patient-specific mitral leaflet segmentation from 4D ultrasound. Med. Image Comput. Comput. Assist. Interv. 14, 520–527 (2011)

    Google Scholar 

Download references

Acknowledgement

This work was supported by grant numbers EB017255 and HL103723 from the National Institutes of Health, as well as the Children’s of Hospital of Philadelphia Department of Anesthesia and Critical Care Medicine, Cancer Care Ontario with funds provided by the Ontario Ministry of Health and Long-Term Care, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Neuroimage Analysis Center supported by the National Institute of Biomedical Imaging and Bioengineering (P41 EB015902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison M. Pouch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pouch, A.M. et al. (2017). Image Segmentation and Modeling of the Pediatric Tricuspid Valve in Hypoplastic Left Heart Syndrome. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics