Skip to main content

Magnetic Recording

  • Chapter
  • First Online:
Book cover Principles of Nanomagnetism

Part of the book series: NanoScience and Technology ((NANO))

  • 1888 Accesses

Abstract

Magnetic storage is the most important technology for data recording and has progressed very rapidly in the last half century. Although it has reached a high level of refinement, it is still evolving and experimenting new proposals. Random access magnetic memories have been developed or proposed, using the magnetization states of magnetic nanodisks and nanorings ; other solutions include the encoding of information onto a string of magnetic domains, or of skyrmions , in magnetic strips and nanowires . This chapter describes the main concepts behind magnetic recording, aspects of the evolution of the recording technologies, and the current challenges faced by this field to continue its capacity expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, K. Moon, X. Luo, E. Chen, A. Ong, A. Driskill-Smith, M. Krounbi, Spin-transfer torque magnetic random access memory (STT-MRAM). J. Emerg. Technol. Comput. Syst. 9(2), 13 (2013)

    Article  Google Scholar 

  2. H.N. Bertram, Theory of Magnetic Recording (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  3. B. Bhushan, Tribology and mechanics of magnetic storage devices, 2nd edn. (Springer, New York, 1996)

    Book  Google Scholar 

  4. S. Bohlens, B. Krüger, A. Drews, M. Bolte, G. Meier, D. Pfannkuche, Current controlled random-access memory based on magnetic vortex handedness. Appl. Phys. Lett. 93, 142508–3 (2008)

    Article  ADS  Google Scholar 

  5. G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008)

    Article  Google Scholar 

  6. C. Chappert, A. Fert, F. Nguyen Van Dau, The emergence of spin electronics in data storage. Nat. Mat. 6, 813–823 (2007)

    Article  Google Scholar 

  7. W.H. Doyle. Magnetic recording technologies: Future technologies. In K.H.J. Buschow, editor, Concise Encyclopedia of Magnetic and Superconducting Materials, pp. 539–548. Elsevier, Amsterdam, 2 edition, 2005

    Google Scholar 

  8. A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nat. Nano. 8, 152–156 (2013)

    Article  Google Scholar 

  9. P.P. Freitas, H. Ferreira, S. Cardoso, S. van Dijken, J. Gregg, Nanostructures for spin electronics, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, New York, 2006), pp. 403–460

    Chapter  Google Scholar 

  10. A.P. Guimarães, Magnetism and Magnetic Resonance in Solids (Wiley, New York, 1998)

    Google Scholar 

  11. G. Han, V. Ko, Z. Guo, H. Meng, Read sensors for greater than 1 Tb/in\(^2\), in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 127–143

    Google Scholar 

  12. X.F. Han, Z.C. Wen, H.X. Wei, Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching. J. Appl. Phys. 103, 07E933–9 (2008)

    Article  Google Scholar 

  13. G. Ju, W. Challener, Y. Peng, M. Seigler, E. Gage, Heat-assisted magnetic recording, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 193–222

    Google Scholar 

  14. T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Antiferromagnetic spintronics. Nat. Nano. 11, 231–241 (2016)

    Article  Google Scholar 

  15. O. Karlqvist, Calculation of the magnetic field in the ferromagnetic layer of a magnetic drum. Trans. Roy. Inst. Technol. Stockholm 86, 3–27 (1954)

    MATH  Google Scholar 

  16. S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Revs. 100, 1777–1788 (2000)

    Article  Google Scholar 

  17. A.V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R.S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W.H. Butler, P.B. Visscher, D. Lottis, E. Chen, V. Nikitin, M. Krounbi, Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D: Appl. Phys. 46(7), 074001 (2013)

    Google Scholar 

  18. S.K. Kim, K.S. Lee, Y.S. Yu, Y.S. Choi, Reliable low-power control of ultrafast vortex-core switching with the selectivity in an array of vortex states by in-plane circular-rotational magnetic fields and spin-polarized currents. Appl. Phys. Lett. 92, 022509 (2008)

    Article  ADS  Google Scholar 

  19. A. Knoll, P. Bachtold, J. Bonan, G. Cherubini, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, C. Hagleitner, D. Jubin, M.A. Lantz, A. Pantazi, H. Pozidis, H. Rothuizen, A. Sebastian, R. Stutz, P. Vettiger, D. Wiesmann, E.S. Eleftheriou, Integrating nanotechnology into a working storage device. Microelectron. Eng. 83, 1692–1697 (2006)

    Article  Google Scholar 

  20. Y. Li, A.K. Menon. Magnetic recording technologies: Overview. In K.H.J. Buschow, editor, Concise Encyclopedia of Magnetic and Superconducting Materials, pp. 627–634. Elsevier, Amsterdam, 2 edition, 2005

    Google Scholar 

  21. L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012)

    Article  ADS  Google Scholar 

  22. J. Meena, S. Sze, U. Chand, T.-Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanosc. Res. Lett. 9, 526 (2014)

    Article  ADS  Google Scholar 

  23. I.M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M.V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–194 (2011)

    Article  ADS  Google Scholar 

  24. S. Parkin, S.-H. Yang, Memory on the racetrack. Nat. Nanotech. 10, 195–198 (2015)

    Article  ADS  Google Scholar 

  25. S.N. Piramanayagam, T.C. Chong, Developments in Data Storage (Wiley, Hoboken, 2012)

    Google Scholar 

  26. H.J. Richter, The transition from longitudinal to perpendicular recording. J. Phys. D: Appl. Phys. 40, R149–R177 (2007)

    Article  ADS  Google Scholar 

  27. R.E. Rottmayer. Magnetic recording heads: historical perspective and background. In K.H.J. Buschow, editor, Concise Encyclopedia of Magnetic and Superconducting Materials, pp. 572–582. Elsevier, Amsterdam, 2 edition, 2005

    Google Scholar 

  28. R. Sbiaa, Magnetoresistive read heads: fundamentals and functionality, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 97–126

    Google Scholar 

  29. J. Shi, Magnetization reversal in patterned magnetic nanostructures, in Ultrathin Magnetic Structures, vol. 4, ed. by B. Heinrich, A.C. Bland (Springer, Berlin, 2005), pp. 307–331

    Google Scholar 

  30. L. Shi, R. Zhao, T.C. Chong, Phase change random access memory, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 277–296

    Google Scholar 

  31. Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, N. Yoshikawa, Future options for HDD storage. IEEE Trans. Magn. 45, 3816–3822 (2009)

    Article  ADS  Google Scholar 

  32. J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015)

    Article  ADS  Google Scholar 

  33. J.-U. Thiele, S. Maat, J.L. Robertson, E.E. Fullerton, Magnetic and structural properties of FePt-FeRh exchange spring films for thermally assisted magnetic recording media. IEEE Trans. Magn. 40, 2537–2542 (2004)

    Article  ADS  Google Scholar 

  34. T. Thomson, L. Abelman, H. Groenland, Magnetic storage: past, present and future, in Magnetic Nanostructures in Modern Technology, ed. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini (Springer, Dordrecht, 2008), pp. 237–306

    Chapter  Google Scholar 

  35. T. Thomson, B.D. Terris, Patterned magnetic recording media: progress and prospects, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 256–276

    Google Scholar 

  36. R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, G. Finocchio, A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, (2014)

    Google Scholar 

  37. K.L. Wang, J.G. Alzate, P. Khalili Amiri, Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D. Appl. Phys. 46(7), 074003 (2013)

    Google Scholar 

  38. D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999)

    Article  ADS  Google Scholar 

  39. R. Wood, M. Williams, A. Kavcic, J. Miles, The feasibility of magnetic recording at 10 Terabits per square inch on conventional media. IEEE Trans. Magn. 45, 917–923 (2009)

    Article  ADS  Google Scholar 

  40. S.-H. Yang, K.-S. Ryu, S. Parkin, Domain-wall velocities of up to 750 m s-1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nano. 10, 221–226 (2015)

    Article  Google Scholar 

  41. T. Yang, A. Hirohata, L. Vila, T. Kimura, Y. Otani, Vertical stack of Co nanorings with current-perpendicular-to-plane giant magnetoresistance: Experiment and micromagnetic simulation. Phys. Rev. B. 76, 172401–172404 (2007)

    Article  ADS  Google Scholar 

  42. R.L. Yaozhang, S.Y.H. Lua, Nonvolatile solid-state magnetic memory, in Developments in Data Storage, ed. by S.N. Piramanayagam, T.C. Chong (Wiley, Hoboken, 2012), pp. 297–325

    Google Scholar 

  43. X. Zhang, G.P. Zhao, H. Fangohr, J.P. Liu, W.X. Xia, J. Xia, F.J. Morvan, Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, (2015)

    Google Scholar 

  44. Y. Zhou, M. Ezawa, A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 5, (2014)

    Google Scholar 

  45. J.-G. Zhu, Y. Zheng, G.A. Prinz, Ultrahigh density vertical magnetoresistive random access memory. J. Appl. Phys. 87, 6668–6673 (2000)

    Article  ADS  Google Scholar 

  46. J.-G. Zhu, X. Zhu, Y. Tang, Microwave assisted magnetic recording. IEEE Trans. Magn. 44, 125–131 (2008)

    Article  ADS  Google Scholar 

  47. X. Zhu, J.-G. Zhu, A vertical MRAM free of write disturbance. IEEE Trans. Magn. 39, 2854–2856 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto P. Guimarães .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guimarães, A.P. (2017). Magnetic Recording. In: Principles of Nanomagnetism. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-59409-5_7

Download citation

Publish with us

Policies and ethics