Advertisement

Risk of Globalization of the Disease in Europe

  • Marta Díaz-MenéndezEmail author
  • Clara Crespillo-Andújar
Chapter
Part of the SpringerBriefs in Immunology book series (BRIEFSIMMUN)

Abstract

Risk of dissemination of ZIKV disease is based on multiple factors, including environmental (climate, socioeconomically, deforestation or industrialization) and travel/traveller factors. Both the disease (viremic travellers) and vector movement to mosquito-free area contributes to the introduction and establishment of autochthonous ZIKV transmission. Mass gathering events can contribute to magnify transmission due to close crowd life in a confined area. Also, multitudinary events can promote the introduction of an infectious disease to a previously naïve area when returning home. Although mathematical models estimate a low risk for introduction of ZIKV in Europe, specific European regions (mainly Portuguese Island of Madeira) account with suitable and efficient vector and opportune climate conditions to harbour the disease. Clinicians should be aware to enable early detection of autochthonous ZIKV cases. International and local guidelines can help clinicians on how to handle suspicious cases, how to confirm the infection and how to report suspected and confirmed cases. In case of autochthonous ZIKV detection, public authorities should perform surveillance and provide adequate resources to sustain enhanced mosquito control.

Keywords

Olympic Game Middle East Respiratory Syndrome ZIKV Infection Aedes Mosquito Middle East Respiratory Syndrome Coronavirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    World Health Organization: Communicable disease alert and response for mass gatherings. http://www.who.int/csr/Mass_gatherings2.pdf (2008). Accessed 1 Feb 2017
  2. 2.
    Ogden NH, Fazil A, Safronetz D, Drebot MA, Wallace J, Rees EE et al (2017) Risk of travel-related cases of Zika virus infection is predicted by transmission intensity in outbreak-affected countries. Parasites & Vectors. 10(1):41CrossRefGoogle Scholar
  3. 3.
    Abubakar I, Gautret P, Brunette GW, Blumberg L, Johnson D, Poumerol G et al (2012) Global perspectives for prevention of infectious diseases associated with mass gatherings. Lancet Infect Dis. 12(1):66–74CrossRefPubMedGoogle Scholar
  4. 4.
    Sutherst RW (2004) Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17(1):136–173CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McCloskey B, Dar O, Zumla A, Heymann DL (2014) Emerging infectious diseases and pandemic potential: status quo and reducing risk of global spread. Lancet Infect Dis. 14(10):1001–1010CrossRefPubMedGoogle Scholar
  6. 6.
    Parham PE, Waldock J, Christophides GK, Hemming D, Agusto F, Evans KJ, et al Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philos Trans R Soc Lond B Biol Sci 370(1665):pii: 20130551Google Scholar
  7. 7.
    Kilpatrick AM, Randolph SE (2012) Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380(9857):1946–1955CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zepeda HM, Perea-Araujo L, Zarate-Segura PB, Vázquez-Pérez JA, Miliar-García A, Garibay-Orijel C et al (2010) Identification of influenza A pandemic (H1N1) 2009 variants during the first 2009 influenza outbreak in Mexico City. J Clin Virol 48(1):36–39CrossRefPubMedGoogle Scholar
  9. 9.
    U.S. Department of Health and Human Services: HHS Pandemic Influenza Plan (2005) https://www.cdc.gov/flu/pdf/professionals/hhspandemicinfluenzaplan.pdf. Accessed 5 Mar 2017
  10. 10.
    Vancini R, Wang G, Ferreira D, Hernandez R, Brown DT (2013) Alphavirus genome delivery occurs directly at the plasma membrane in a time- and temperature-dependent process. J Virol 87(8):4352–4359CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wilder-Smith A, Goh KT, Barkham T, Paton NI (2003) Hajj-associated outbreak strain of Neisseria meningitidis serogroup W135: estimates of the attack rate in a defined population and the risk of invasive disease developing in carriers. Clin Infect Dis 36(6):679–683CrossRefPubMedGoogle Scholar
  12. 12.
    Morin CW, Comrie AC, Ernst K (2013) Climate and dengue transmissionç: evidnce and implications. Environ Health Perspect. 121 (11–12):1264–72Google Scholar
  13. 13.
    Westbrook CJ, Reiskind MH, Pesko KN, Greene KE, Lounibos LP (2010) Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to Chikungunya virus. Vector Borne Zoonotic Dis 10(3):241–247CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pfaff G, Lohr D, Santibanez S, Mankertz A, van Treeck U, Schonberger K et al (2010) Spotlight on measles 2010: measles outbreak among travellers returning from a mass gathering, Germany, September to October 2010. Euro Surveill 15(50)Google Scholar
  15. 15.
    Pontes RJ, Freeman J, Oliveira-Lima JW, Hodgson JC, Spielman A (2000) Vector densities that potentiate dengue outbreaks in a Brazilian city. Am J Trop Med Hyg 62(3):378–383CrossRefPubMedGoogle Scholar
  16. 16.
    Paz S, Semenza JC (2016) El Niño and climate change: contributing factors in the dispersal of Zika virus in the Americas? Lancet 387(10020):745CrossRefPubMedGoogle Scholar
  17. 17.
    Gautret P, Charrel R, Benkouiten S, Belhouchat K, Nougairede A, Drali T et al (2014) Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj. Emerg Infect Dis 20(4):728–730CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Massad E, Burattini MN, Ximenes R, Amaku M, Wilder-Smith A (2014) Dengue outlook for the World Cup in Brazil. Lancet Infect Dis 14(7):552–553CrossRefPubMedGoogle Scholar
  19. 19.
    Caminade C, Turner J, Metelmann S, Hesson JC, Blagrove MSC, Solomon T et al (2017) Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc Natl Acad Sci USA 114(1):119–124CrossRefPubMedGoogle Scholar
  20. 20.
    Aguiar M, Rocha F, Pessanha JEM, Mateus L, Stollenwerk N (2015) Carnival or football, is there a real risk for acquiring dengue fever in Brazil during holidays seasons? Sci Rep 16(5):8462CrossRefGoogle Scholar
  21. 21.
    Ximenes R, Amaku M, Lopez LF, Coutinho FAB, Burattini MN, Greenhalgh D et al (2016) The risk of dengue for non-immune foreign visitors to the 2016 summer olympic games in Rio de Janeiro, Brazil. BMC Infect Dis 29(16):186CrossRefGoogle Scholar
  22. 22.
    Gerland P, Raftery AE, ev ikova H, Li N, Gu D, Spoorenberg T et al (2014) World population stabilization unlikely this century. Science 346(6206):234–7Google Scholar
  23. 23.
    European Centre for Disease Prevention and Control: Rapid risk assessment: Zika virus disease epidemic potential association with microcephaly and Guillain-Barre syndrome (2016). http://ecdc.europa.eu/en/publications/Publications/rapid-risk-assessment-zika-october-2016.pdf. Accessed 5 Mar 2017
  24. 24.
    WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation: Global water supply and sanitation assessment 2000 report. http://www.who.int/water_sanitation_health/monitoring/jmp2000.pdf (2000). Accessed 18 Feb 2017
  25. 25.
    Massad E, Coutinho FAB, Wilder-Smith A (2016) Is Zika a substantial risk for visitors to the Rio de Janeiro Olympic Games? Lancet 388(10039):25CrossRefPubMedGoogle Scholar
  26. 26.
    Hashim JH, Hashim Z (2016) Climate change, extreme weather events, and human health implications in the Asia pacific region. Asia Pac J Public Health 28(2 Suppl):8S–14SCrossRefPubMedGoogle Scholar
  27. 27.
    Lewnard JA, Gonsalves G, Ko AI (2016) Low risk of international Zika virus spread due to the 2016 olympics in Brazil. Ann Intern Med 165(4):286CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Snyder PK (2010) The influence of tropical deforestation on the Northern hemisphere climate by atmospheric teleconnections. Earth Interact. 14(4):1–34CrossRefGoogle Scholar
  29. 29.
    World Health Organization: Emergencies Zika situation report. http://www.who.int/emergencies/zika-virus/situation-report/25-august-2016/en (2016). Accessed 1 Mar 2017
  30. 30.
    Ramírez JA, Finnerty B (1996) CO2 and temperature effects on evapotranspiration and irrigated agriculture. J Irrig Drain 122(3):155–163CrossRefGoogle Scholar
  31. 31.
    Villela DAM, Bastos LS, DE Carvalho LM, Cruz OG, Gomes MFC, Durovni B et al (2017) Zika in Rio de Janeiro: assessment of basic reproduction number and comparison with dengue outbreaks. Epidemiol Infect 1–9Google Scholar
  32. 32.
    Bogoch II, Brady OJ, Kraemer MUG, German M, Creatore MI, Kulkarni MA et al (2016) Anticipating the international spread of Zika virus from Brazil. Lancet 387(10016):335–336CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Burattini MN, Coutinho FAB, Lopez LF, Ximenes R, Quam M, Wilder-Smith A et al (2016) Potential exposure to Zika virus for foreign tourists during the 2016 Carnival and Olympic Games in Rio de Janeiro. Brazil Epidemiol Infect 144(9):1904–1906CrossRefPubMedGoogle Scholar
  34. 34.
    WHO Publication. World Health Organization: Situation report on Zika virs Infection. http://apps.who.int/iris/bitstream/10665/251905/1/zikasitrep8Dec2016-eng.pdf. (2016). Accessed 1 Mar 2017
  35. 35.
    Lindholm DA, Myers T, Widjaja S, Grant EM, Telu K, Lalani T, et al. Mosquito exposure and chikungunya and dengue infection among travelers during the chikungunya outbreak in the Americas. Am J Trop Med Hyg 16–0635Google Scholar
  36. 36.
    Díaz-Menéndez M, de la Calle-Prieto F, Montero D, et al. Initial experience with imported Zika virus infection in Spain (2016). Enferm Infecc Microbiol Clin. pii: S0213-005X(16)30257-9Google Scholar
  37. 37.
    Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L, Schneider ADB et al (2016) Zika virus: medical countermeasure development challenges. PLoS Negl Trop Dis 10(3):e0004530CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Massad E, Tan S-H, Khan K, Wilder-Smith A (2017) Estimated Zika virus importations to Europe by travellers from Brazil. Glob Health Action 9(1):31669CrossRefGoogle Scholar
  39. 39.
    Vega-Rua A, Zouache K, Caro V, Diancourt L, Delaunay P, Grandadam M et al (2013) High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the Southeast of France. PLoS ONE 8(3):e59716CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rezza G (2014) Dengue and chikungunya: long-distance spread and outbreaks in naïve areas. Pathogens and Global Health 108(8):349–355CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sabbatani S, Fiorino S (2007) Yellow fever. Infez Med 15(2):129–141PubMedGoogle Scholar
  42. 42.
    Rocklöv J, Quam MB, Sudre B, German M, Kraemer MUG, Brady O et al (2016) Assessing seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe. EBIOM 9:250–256CrossRefGoogle Scholar
  43. 43.
    Jupille H, Seixas G, Mousson L, Sousa CA, Failloux A-B (2016) Zika virus, a new threat for Europe? PLoS Negl Trop Dis 10(8):e0004901CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Seixas G, Salgueiro P, Silva AC, Campos M, Spenassatto C, Reyes-Lugo M et al (2013) Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue vector. Mem Inst Oswaldo Cruz 108:3–10CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wilder-Smith A, Quam M, Sessions O, Rocklov J, Liu-Helmersson J, Franco L et al (2014) The 2012 dengue outbreak in Madeira: exploring the origins. Euro Surveill 19(8):20718CrossRefPubMedGoogle Scholar
  46. 46.
    Heitmann A, Jansen S, Lühken R, Leggewie M, Badusche M, Pluskota B et al (2017) Experimental transmission of Zika virus by mosquitoes from central Europe. Euro Surveill 22(2):30437CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Venturi G, Zammarchi L, Fortuna C, Remoli ME, Benedetti E, Fiorentini C et al (2016) An autochthonous case of Zika due to possible sexual transmission, Florence, Italy, 2014. Euro Surveill 21(8):30148CrossRefPubMedGoogle Scholar
  48. 48.
    Arsuaga M, Bujalance SG, Díaz-Menéndez M, Vázquez A, Arribas JR (2016) Probable sexual transmission of Zika virus from a vasectomised man. Lancet Infect Dis 16(10):1107CrossRefPubMedGoogle Scholar
  49. 49.
    Delisle E, Rousseau C, Broche B, Leparc-Goffart I, L’Ambert G, Cochet A et al (2015) Chikungunya outbreak in Montpellier, France, September to October 2014. Euro Surveill 20(17):pii: 21108Google Scholar
  50. 50.
    European Centre for Disease Prevention and Control: Preparing for Zika in the EU (2016) http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/zika-outbreak/Pages/preparedness.aspx. Accessed 19 Feb 2016

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Marta Díaz-Menéndez
    • 1
    Email author
  • Clara Crespillo-Andújar
    • 1
  1. 1.Tropical Medicine DepartmentHospital Universitario La Paz-Carlos IIIMadridSpain

Personalised recommendations