Skip to main content

Counter-Gradient Term Applied to the Turbulence Parameterization in the BRAMS

  • Chapter
  • First Online:
Integral Methods in Science and Engineering, Volume 2

Abstract

The numerical weather prediction is a routine in operational meteorological centers, where sophisticated computer models are executed. The atmospheric dynamics is simulated by solving the Navier-Stokes equations, considering several physical phenomena. One parameterization applied to this dynamical system is to represent the turbulence. A counter-gradient flow can be described for higher order closure turbulence approaches. Here, a first order parameterization for the turbulent flow is coupled with an explicit counter-gradient term. Both latter schemes are based on the Taylors statistical theory of turbulence. The parameterization schemes are applied to the BRAMS, a mesoscale meteorological model. The simulation is compared with experimental data measured in the Brazilian Amazon region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Cray XE6 supercomputer installed CPTEC-INPE: 1280 processing nodes and 30,720 cores (2 processors per node and 12-cores for each processor).

References

  1. Barbosa, J.P.S.: New atmospheric turbulence parameterizations for the BRAMS. M.Sc. thesis in Applied Computing (INPE), São José dos Campos, SP, Brazil (2007) (in Portuguese)

    Google Scholar 

  2. Campos Velho, H.F., Degrazia, G.A., Carvalho, J.C.: A new formulation for the dissipation function under strong convective regime. Brazilian Congress on Meteorology, vol. 3. Campos do Jordao, Brazil (1996)

    Google Scholar 

  3. Campos Velho, H.F., Holtslag, A.M., Degrazia, G., Pielke, R.Sr.: New parameterizations in RAMS for vertical turbulent fluxes. Technical Report, Colorado State University, Fort Collins (CO), USA (1998)

    Google Scholar 

  4. Campos Velho, H.F.: Mathematical modeling in atmospheric turbulence – short-course. Braz. Soc. Compuat. Appl. Math. (2010). ISSN 2175-3385 (in Portuguese)

    Google Scholar 

  5. Cuijpers, J., Holtslag, A.M.: Impact of skewness and nonlocal effects on scalar and boundary fluxes in convective boundary layers. J. Atmos. Sci.51, 151–162 (1998)

    Article  Google Scholar 

  6. Deardorff, J.W.: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci.23, 503–506 (1966)

    Article  Google Scholar 

  7. Deardorff, J.W.: Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res.77, 5900–5904 (1972)

    Article  Google Scholar 

  8. Degrazia, G.A., Anfossi, D., Carvalho, J.C., Mangia, C., Tirabassi, T., Campos Velho, H.F.: Turbulence parameterisation for PBL dispersion models in all stability conditions. Atmos. Environ.21, 3575–3583 (2000)

    Article  Google Scholar 

  9. Degrazia, G.A., Moraes, O.L.L.: A model for eddy diffusivity in a stable boundary layer. Bound.-Layer Meteorol.58, 205–214 (1992)

    Article  Google Scholar 

  10. Degrazia, G.A., Campos Velho, H.F., Carvalho, J.C.: Nonlocal exchange coefficients for the convective boundary layer derived from spectral properties. Beiträge zur Phys. Atmosphäre70, 57–64 (1997)

    Google Scholar 

  11. Freitas, S.R., Longo, K.M., et al.: The coupled aerosol and tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CATT-BRAMS) – Part 1: model description and evaluation. Atmos. Chem. Phys.9, 2843–2861 (2009)

    Article  Google Scholar 

  12. Freitas, S.R., Panetta, J., Longo, K.M., et al.: The Brazilian developments on the regional atmospheric modeling system (BRAMS 5.2): an integrated environmental model tuned for tropical areas. Geophys. Model Dev.130, 1–55 (2017)

    Google Scholar 

  13. Longo, K.M., Freitas, S.R., et al.: The coupled aerosol and tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CATT-BRAMS) – Part 2: model sensitivity to the biomass burning inventories. Atmos. Chem. Phys.10, 2843–2861 (2010)

    Google Scholar 

  14. Mellor, G. L., Yamada, T.: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys.20, 851–875 (1982)

    Article  Google Scholar 

  15. Pielke, Sr. R., Cotton, W.R., Walko, R.L., Tremback, C.J., Lyons, W.A., Grasso, L.D., Nicholls, M.E., Moran, M.D., Wesley, D.A., Lee, T.J., Copeland, J.: A comprehensive meteorological modeling system: RAMS. Meteorog. Atmos. Phys.49, 69–91 (1992)

    Article  Google Scholar 

  16. Roberti, D.R., Campos Velho, H.F., Degrazia, G.: Identifying counter-gradient term in atmospheric convective boundary layer. Inverse Prob. Eng.12, 329–339 (2004)

    Article  Google Scholar 

  17. Smagorinsky, J.: General circulation experiments with the primitive equations: I. the basic experiment. Mon. Weather Rev.91, 99–164 (1963)

    Google Scholar 

  18. Taylor, G.I.: Diffusion by continuous movements. Proc. R. Soc. Lond.20, 196–212 (1922)

    MathSciNet  MATH  Google Scholar 

  19. Taylor, G.I.: Statistical theory of turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.151, 421–444 (1935)

    Article  MATH  Google Scholar 

  20. Vogelezang, D.H.P., Holtslag, A.A.M.: Evaluation and model impacts of alternative boundary-layer height formulations. Bound. Layer Meteorol.81, 245–269 (1996)

    Article  Google Scholar 

  21. Welter, M.E.S.: Counter-gradient term modeling for turbulent Parameterization in the BRAMS atmospheric model. M.Sc. Thesis on Applied Computing, INPE, São José dos Campos, SP, Brazil (2016) (In Portuguese)

    Google Scholar 

  22. Zilitinkevich, S.S.: On the determination of the height of the Ekman boundary layer. Bound. Layer Meteor.3, 141–145 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. S. Welter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Welter, M.E.S., de Campos Velho, H.F., Freitas, S.R., Ruiz, R.S.R. (2017). Counter-Gradient Term Applied to the Turbulence Parameterization in the BRAMS. In: Constanda, C., Dalla Riva, M., Lamberti, P., Musolino, P. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59387-6_29

Download citation

Publish with us

Policies and ethics