Skip to main content

Development of a Poroelastic Model of Spinal Cord Cavities

  • Chapter
  • First Online:
Integral Methods in Science and Engineering, Volume 2

Abstract

Syringomyelia is a rare condition characterised by large fluid filled cavities in the spinal cord. Abnormal pressure changes in the cerebrospinal fluid (CSF) surrounding the cord are thought to contribute to cavity formation. A poroelastic mathematical model of the spinal cord has been built to investigate this idea. Accuracy of the model is being improved using diffusion weighted MRI (DW-MRI) to obtain updated tissue parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bower, A.: Applied Mechanics of Solids. Taylor & Francis/CRC, Boca Raton (2010)

    Google Scholar 

  2. Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40(1), 117–124 (2007)

    Article  Google Scholar 

  3. Clarke, E., Fletcher, D., Stoodley, M., Bilston, L.: Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J. Biomech. 46(11), 1801–1809 (2013)

    Article  Google Scholar 

  4. Elliott, N., Bertram, C., Martin, B., Brodbelt, A.R.: Syringomyelia: a review of the biomechanics. J. Fluid. Struct. 40, 1–24 (2013)

    Article  Google Scholar 

  5. Fischbein, N., Dillon, W., Cobbs, C., Weinstein, P.: The “presyrinx” state: is there a reversible myelopathic condition that may precede syringomyelia? Neurosurg. Focus 8(3), 1–13 (2000)

    Article  Google Scholar 

  6. Franze, K., Janmey, P., Guck, J.: Mechanics in neuronal development and repair. Ann. Rev. Biomed. Eng. 15, 227–251 (2013)

    Article  Google Scholar 

  7. Grussu, F., Schneider, T., Zhang, H., Alexander, D., Wheeler-Kingshott, C.: Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. NeuroImage 111, 590–601 (2015)

    Article  Google Scholar 

  8. Harris, P., Hardwidge, C.: A porous finite element model of the motion of the spinal cord. In: Constanda, C., Pérez, M.E. (eds.) Integral Methods in Science and Engineering, vol. 2, pp.193–201. Birkhäuser, Boston (2009)

    Google Scholar 

  9. Koser, D., Moeendarbary, E., Hanne, J., Kuerten, S., Franze, K.: CNS cell distribution and axon orientation determine local spinal cord mechanical properties. Biophys. J. 108(9), 2137–2147, (2015)

    Article  Google Scholar 

  10. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, Chichester (1998)

    MATH  Google Scholar 

  11. Mazuchowski, E., Thibault, L: Biomechanical properties of the spinal cord and pia mater. In: Summer Bioengineering Conference, Key Biscayne, FL (2003)

    Google Scholar 

  12. McKee, C.T., Last, J.A., Russell, P., Murphy, C.J.: Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Pt. B-Rev. 17(3), 155–164 (2011)

    Article  Google Scholar 

  13. Moeendarbary, E., Valon, L., Fritzche, M., Harris, A., Moulding, D., Thrasher, A., Stride, E., Mahadevad, L., Charras, G.: The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12(3), 253–261, (2013)

    Article  Google Scholar 

  14. Nicholson C., Syková, E.: Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21(5), 207–215 (1998)

    Article  Google Scholar 

  15. Sarntinoranont, M., Chen, X., Zhao, J., Mareci, T.: Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34(8), 1304–1321 (2006)

    Article  Google Scholar 

  16. Støverud, K., Alnæs, M., Langtangen, H., Haughton, V., Mardal, K.: Poro-elastic modeling of syringomyelia. Comput. Methods Biomec. 19(6), 686–698 (2016)

    Article  Google Scholar 

  17. Syková, E., Nicholson, C.: Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008)

    Article  Google Scholar 

  18. Venton, J., Bouyagoub, S., Harris, P.J., Phillips, G.: Deriving spinal cord permeability and porosity using diffusion-weighted MRI data. In Proceedings of the 6th Biot Conference on Poromechanics, Paris, France (2017). (Manuscript accepted, in publication)

    Google Scholar 

  19. Zhang, H., Schneider, T., Wheeler-Kingshott, C., Alexander, D.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Venton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Venton, J., Harris, P.J., Phillips, G. (2017). Development of a Poroelastic Model of Spinal Cord Cavities. In: Constanda, C., Dalla Riva, M., Lamberti, P., Musolino, P. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59387-6_27

Download citation

Publish with us

Policies and ethics