Skip to main content

Fast Parameter Estimation for Cancer Cell Progression and Response to Therapy

  • Chapter
  • First Online:
Integral Methods in Science and Engineering, Volume 2
  • 1628 Accesses

Abstract

We investigate a mathematical model describing the development of cancer cells in the mammalian cell division cycle under therapy and present an efficient strategy for fast numerical simulations and effective treatment programs in parallel computing environments. We perform a series of computations implemented on a cluster of computers with multicore processors for which the model equations are algorithmically split and solved over independent processors working in parallel and examine the speedup gained. In our implementation, the time interval is split into a number of subintervals corresponding to the number of available processors and the parallelization is invoked across time so that the number of processors to be used is unrestricted. We also extend our implementation to a generalized model of human tumor growth in vivo and demonstrate the computational efficiency of the algorithm and the associated decrease in computational time as the number of utilized processors increases by means of a series of numerical experiments performed in a parallel computing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afraites, L., Bellouquid, A.: Global optimization approaches to parameters identification in an immune competition model. Commun. Appl. Ind. Math. 5, e-466, 1–19 (2014)

    Google Scholar 

  2. American Cancer Society: Cancer Facts & Figures 2015. American Cancer Society, Atlanta (2015)

    Google Scholar 

  3. Basse, B., Baguley, B.C., Marshall, E.S., Joseph, W.R., van Brunt, B., Wake, G.C., Wall, D.J.N.: A mathematical model for analysis of the cell cycle in cell lines derived from human tumours. J. Math. Biol. 47, 295–312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellomo, N.: Modeling complex living systems. A kinetic theory and stochastic game approach. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Inc., Boston (2008)

    Google Scholar 

  5. Bellomo, N., Bellouquid, A., Delitala, M.: Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition. Math. Models Methods Appl. Sci. 14, 1683–1733 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellomo, N., Li, N.K, Maini, P.K.: On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18, 593–646 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellouquid, A., CH-Chaoui, M.: Asymptotic analysis of a nonlinear integro-differential system modeling the immune response. Comput. Math. Appl. 68, 905–914 (2014)

    Google Scholar 

  8. Bellouquid, A., Delitala, M.: Mathematical modeling of complex biological systems. A kinetic theory approach. With a preface by Nicola Bellomo. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston, Inc., Boston (2006)

    Google Scholar 

  9. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  10. Drucis, K., Kolev, M., Majda, W., Zubik-Kowal, B.: Nonlinear modeling with mammographic evidence of carcinoma. Nonlinear Anal. Real World Appl. 11, 4326–4334 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jackiewicz, Z., Kuang, Y., Thalhauser, C., Zubik-Kowal, B.: Numerical solution of a model for brain cancer progression after therapy. Math. Model. Anal. 14, 43–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jackiewicz, Z., Zubik-Kowal, B., Basse, B.: Finite-difference and pseudospectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Math. Biosci. Eng. 6, 561–572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jorcyk, C.L., Kolev, M., Tawara, K., Zubik-Kowal, B.: Experimental versus numerical data for breast cancer progression. Nonlinear Anal. Real World Appl. 13, 78–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kolev, M., Nawrocki, S., Zubik-Kowal, B.: Numerical simulations for tumor and cellular immune system interactions in lung cancer treatment. Commun. Nonlinear Sci. Numer. Simul. 18, 1473–1480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nawrocki, S., Zubik-Kowal, B.: Clinical study and numerical simulation of brain cancer dynamics under radiotherapy. Commun. Nonlinear Sci. Numer. Simul. 22, 564–573 (2015)

    Article  MathSciNet  Google Scholar 

  16. NVIDIA Corporation: CUDA Programming Guide (2015). NVIDIA Corporation available at http://www.nvidia.com/

  17. OpenACC: The OpenACC Application Programming Interface (2013). http://www.openacc.org

  18. Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann, San Frncisco (1996)

    MATH  Google Scholar 

  19. Wilson, G.D., McNally, N.J., Dische, S., Saunders, M.I., Des Rochers, C., Lewis, A.A., Bennett, M.H.: Measurement of cell kinetics in human tumours in vivo using bromo-deoxyuridine incorporation and flow cytometry. Br. J. Cancer 58, 423–431 (1988)

    Article  Google Scholar 

  20. Zubik-Kowal, B.: Numerical algorithm for the growth of human tumor cells and their responses to therapy. Appl. Math. Comput. 230, 174–179 (2014)

    MathSciNet  Google Scholar 

  21. Zubik-Kowal, B.: A fast parallel algorithm for delay partial differential equations modeling the cell cycle in cell lines derived from human tumors. In: Hartung, F., Pituk, M. (eds.) Recent Advances in Delay Differential and Difference Equations, vol. 94, pp. 251–260. Springer Proceedings in Mathematics & Statistics. Springer, Cham (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zubik-Kowal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stpiczyński, P., Zubik-Kowal, B. (2017). Fast Parameter Estimation for Cancer Cell Progression and Response to Therapy. In: Constanda, C., Dalla Riva, M., Lamberti, P., Musolino, P. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59387-6_26

Download citation

Publish with us

Policies and ethics