Skip to main content

An Acceleration Approach for Fracture Problems in the Extended Boundary Element Method (XBEM) Framework

  • Chapter
  • First Online:
  • 1455 Accesses

Abstract

In this paper we investigate the use of the adaptive cross approximation (ACA) in the extended boundary element method (XBEM) framework. The proposed XBEM formulation is an implicit enrichment approach, where the stress intensity factors (SIF) are obtained with the displacements, eliminating the need of further post-processing to calculate these parameters. However, it is known that the boundary element formulation has drawbacks with respect to the matrix of the linear system of equations. Such matrices are unsymmetric and fully populated, which can be computationally expensive for large fracture problems containing multiple boundaries. We will show that ACA has the potential to accelerate the computational time without reducing the accuracy of the solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alatawi, I.A., Trevelyan, J.: A direct evaluation of stress intensity factors using the extended dual boundary element method. Eng. Anal. Bound. Elem. 52, 56–63 (2015)

    Article  MathSciNet  Google Scholar 

  2. Benedetti, I., Aliabadi, M.H.: A fast hierarchical dual boundary element method for three-dimensional elastodynamic crack problems. Int. J. Numer. Methods Eng. 84(9), 1038–1067 (2010)

    Article  MATH  Google Scholar 

  3. Benedetti, I., Aliabadi, M.H., Davi, G.: A fast 3D dual boundary element method based on hierarchical matrices. Int. J. Solids Struct. 45(7), 2355–2376 (2008)

    Article  MATH  Google Scholar 

  4. Bebendorf, M.: Hierarchical Matrices. Springer, New York (2008)

    MATH  Google Scholar 

  5. Benedetti, I., Milazzo, A., Aliabadi, M.H.: A fast dual boundary element method for 3D anisotropic crack problems. Int. J. Numer. Methods Eng., 80(10), 1356–1378 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grytsenko, T., Galybin, A.N.: Numerical analysis of multi-crack large-scale plane problems with adaptive cross approximation and hierarchical matrices. Eng. Anal. Bound. Elem. 34(5), 501–510 (2010)

    Article  MATH  Google Scholar 

  8. Hackbusch, W.: A sparse matrix arithmetic based on \(\mathcal{H}\)-matrices. Part I: Introduction to \(\mathcal{H}\)-matrices. Computing 62(2), 89–108 (1999)

    Google Scholar 

  9. Hattori, G., Alatawi, I.A., Trevelyan, J.: An extended boundary element method formulation for the direct calculation of the stress intensity factors in fully anisotropic materials. Int. J. Numer. Methods Eng. 109(7), 965–981 (2017)

    Article  Google Scholar 

  10. Hattori, G., Rojas-Díaz, R., Sáez, A., Sukumar, N., García-Sánchez, F.: New anisotropic crack-tip enrichment functions for the extended finite element method. Comput. Mech. 50(5), 591–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, Y.J.: Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  12. Milazzo, A., Benedetti, I., Aliabadi, M.H.: Hierarchical fast BEM for anisotropic time-harmonic 3-D elastodynamics. Comput. Struct. 96, 9–24 (2012)

    Article  Google Scholar 

  13. Messner M., Schanz, M.: An accelerated symmetric time-domain boundary element formulation for elasticity. Eng. Anal. Bound. Elem. 34(11), 944–955 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nishimura, N., Yoshida, K.-I., Kobayashi, S.: A fast multipole boundary integral equation method for crack problems in 3D. Eng. Anal. Bound. Elem. 23(1), 97–105 (1999)

    Article  MATH  Google Scholar 

  15. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer Science & Business Media, New York (2007)

    MATH  Google Scholar 

  17. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simpson, R., Trevelyan, J.: A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics. Comput. Meth. Appl. Mech. Eng., 200(1), 1–10 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yoshida, K.-I., Nishimura, N., Kobayashi, S.: Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D. Int. J. Numer. Methods Eng. 50(3), 525–547 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the Faculty of Science, Durham University, for his Postdoctoral Research Associate funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hattori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hattori, G., Kettle, S.H., Campos, L., Trevelyan, J., Albuquerque, E.L. (2017). An Acceleration Approach for Fracture Problems in the Extended Boundary Element Method (XBEM) Framework. In: Constanda, C., Dalla Riva, M., Lamberti, P., Musolino, P. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59387-6_11

Download citation

Publish with us

Policies and ethics