Skip to main content

An Indirect Boundary Integral Equation Method for Boundary Value Problems in Elastostatics

  • Chapter
  • First Online:
Integral Methods in Science and Engineering, Volume 1
  • 1137 Accesses

Abstract

In this paper we describe an indirect boundary integral equations method to solve the Dirichlet problem for Lamé system in a multiply connected domain of \(\mathbb{R}^{n}\), n ≥ 2. In particular we show how to represent the solution in terms of a single-layer potential, instead of the classical double-layer potential. By using the theory of reducible operators and the theory of differential forms we treat also the double-layer potential ansatz for the traction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cialdea, A.: On the oblique derivation problem for the Laplace equation, and related topics. Rend. Accad. Naz. Sci. XL Mem. Mat. 12(1), 181–200 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Cialdea, A: The multiple layer potential for the biharmonic equation in n variables. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 3(4), 241–259 (1992)

    Google Scholar 

  3. Cialdea, A., Leonessa, V., Malaspina, A.: Integral representations for solutions of some BVPs for the Lamé system in multiply connected domains. Bound. Value Prob. 2011(53), 25 pp. (2011)

    Google Scholar 

  4. Cialdea, A., Leonessa, V., Malaspina, A.: On the Dirichlet and the Neumann problems for Laplace equation in multiply connected domains. Complex Var. Elliptic Equ. 57(10), 1035–1054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cialdea, A., Leonessa, V., Malaspina, A.: On the Dirichlet problem for the Stokes system in multiply connected domains. Abstr. Appl. Anal. 2013, Art. ID 765020, 12 pp. (2013)

    Google Scholar 

  6. Cialdea, A., Dolce, E., Malaspina, A., Nanni, V.: On an integral equation of the first kind arising in the theory of Cosserat. Int. J. Math. 24(5), 21 pp. (2013)

    Google Scholar 

  7. Cialdea, A., Dolce, E., Leonessa, V., Malaspina, A.: New integral representations in the linear theory of viscoelastic materials with voids. Publ. Math. Inst. Nouvelle série 96(110), 49–65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cialdea, A., Dolce, E., Malaspina, A.: A complement to potential theory in the Cosserat elasticity. Math. Methods Appl. Sci. 38(3), 537–547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cialdea, A., Leonessa, V., Malaspina, A.: The Dirichlet problem for second-order divergence form elliptic operators with variable coefficients: the simple layer potential ansatz. Abstr. Appl. Anal. 2015, Art. ID 276810, 11 pp. (2015)

    Google Scholar 

  10. Fichera, G.: Spazi lineari di k-misure e di forme differenziali. In: Proc. Internat. Sumpos. Linear Spaces (Jerusalem 1960), pp. 175–226 (1961)

    Google Scholar 

  11. Flanders, H: Differential Forms with Applications to the Physical Science. Academic, New York/San Francisco/London (1963)

    MATH  Google Scholar 

  12. Gonzalez, O.: A theorem on the surface traction field in potential representations of Stokes flow. SIAM J. Appl. Math. 75(4), 1578–1598 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Günter, N.M.: Potential Theory and Its Applications to Basic Problems of Mathematical Physics. Translated from the Russian by John R. Schulenberger. Frederick Ungar Publishing Co., New York (1967)

    MATH  Google Scholar 

  14. Hsiao, G.C., Wendland, W.L.: Boundary Intgral Equations. Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

    Google Scholar 

  15. Kohr, M.: A mixed boundary value problem for the unsteady Stokes system in a bounded domain in \(\mathbb{R}^{n}\). Eng. Anal. Bound. Elem. 29, 936–943 (2005)

    Article  MATH  Google Scholar 

  16. Kohr, M.: The Dirichlet problems for the Stokes resolvent equations in bounded and exterior domains in \(\mathbb{R}^{n}\). Math. Nachr. 280(5–6), 534–559 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kupradze, V.D., Gegelia, T.G., Bas̆eleis̆vili, M.O., Burculadze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Series in Applied Mathematics and Mechanics, vol. 25. North-Holland, Amsterdam (1979)

    Google Scholar 

  18. Maremonti, P., Russo, R., Starita, G.: On the Stokes equations: the boundary value problem. In: Advances in Fluid Dynamics, pp. 69–140. Quad. Mat. Aracne, Rome (1999)

    Google Scholar 

  19. Mikhlin, S.G., Prössdorf, S: Singular Integral Operators. Springer, Berlin (1986)

    Book  Google Scholar 

  20. Mrevlishvili, M.: Liapunov-Tauber type theorem in thermo-electro-magneto-elasticity theory. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 24, 88–92 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Natroshvili, D.: Boundary integral equation method in the steady state oscillation problems for anisotropic bodies. Math. Methods Appl. Sci. 20, 95–119 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Starita, G., Tartaglione, A.: On the traction problem for the Stokes system. Math. Models Methods Appl. Sci. 12, 813–834 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Malaspina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Malaspina, A. (2017). An Indirect Boundary Integral Equation Method for Boundary Value Problems in Elastostatics. In: Constanda, C., Dalla Riva, M., Lamberti, P., Musolino, P. (eds) Integral Methods in Science and Engineering, Volume 1. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59384-5_16

Download citation

Publish with us

Policies and ethics