Skip to main content

Technology-Enhanced Infrastructure

  • Chapter
  • First Online:
Smart Cities

Abstract

The backbone of every city is a system of infrastructure assets. Cities have a responsibility to their citizens to at least maintain, if not improve, the safety, functionality, environmental impact, and economic value of these structures. Sensor-monitoring technologies used in combination with asset management strategies will help cities maintain their infrastructure. Sensors are just one component of a Technology-Enhanced Infrastructure (TEI) system. TEIs also include an array of physical assets; inventory of embedded, attached, and remote sensors; a robust communication and data storage network; and a cohort of asset managers. This chapter examines each component of a TEI system and provides two examples of the use of sensors to monitor infrastructure assets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adibhatla V, Henke G, Atwater P (2015) Street quality identification device. Paper presented at Bloomberg data for good exchange conference, New York City, 28 Sept 2015

    Google Scholar 

  2. Ford Motor Company (2016) 2017 Fusion sport. http://www.ford.com/cars/fusion/trim/sport/ Accessed Sept 16 2016

  3. Moyo P, Brownjohn JMW, Suresh R et al (2005) Development of fiber Bragg grating sensors for monitoring civil infrastructure. Eng Struct 27:1828–1834

    Article  Google Scholar 

  4. Majumder M, Gangopadhyay TK, Chakrabortty AK et al (2008) Fiber Bragg gratings in structural health monitoring: present status and applications. Sens Actuator 147:150–164

    Article  Google Scholar 

  5. Casas JR, Cruz PJS (2003) Fiber optic sensors for bridge monitoring. J Bridge Eng 8(6):262–373

    Article  Google Scholar 

  6. Chan THT, Yu L, Tam HY et al (2006) Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation. Eng Struct 28:648–659

    Article  Google Scholar 

  7. Schulz WL, Conte JP, Udd E et al (2000) Static and dynamic testing of bridges and highways using long-gage fiber Bragg grating based strain sensors. In: Environmental and industrial sensing. International society for optics and photonics, vol 4202, pp 79–86

    Google Scholar 

  8. Li HN, Li DS, Song GB (2004) Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng Struct 26:1647–1657

    Article  Google Scholar 

  9. D’Alessandro A, Ubertini F, Materazzi AL (2016) Self-sensing concrete nano composites for smart structures. Int J Civil Environ Struct Constr Archit Eng 10(5):576–581

    Google Scholar 

  10. Chen PW, Chung DDL (1993) Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection. Smart Mater Struct 2:22–30

    Article  Google Scholar 

  11. Fu X, Chung DDL (1996) Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cem Concr Res 29:435–439

    Google Scholar 

  12. Chung DDL (1998) Self-monitoring structural materials. Mater Sci Eng R22:57–78

    Article  Google Scholar 

  13. Shi ZQ, Chung DDL (1999) Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion. Cem Concr Res 29:435–439

    Article  Google Scholar 

  14. Büyüköztürk O (1998) Imaging of concrete structures. NDT&E Int 31(4):233–243

    Article  Google Scholar 

  15. Arunachalam K, Melapudi VR, Upda L et al (2006) Microwave NDT of cement-based materials using far-field reflection coefficients. NDT&E Int 39:585–593

    Article  Google Scholar 

  16. Jamil M, Hassan MK, Al-Mattarneh HMA et al (2013) Concrete dielectric properties investigation using microwave nondestructive techniques. Mater Struct 46:77–87

    Article  Google Scholar 

  17. Bungey JH (2004) Sub-surface radar testing of concrete: a review. Constr Build Mater 18:1–8

    Article  Google Scholar 

  18. Lin J, Liu CR (2004) Measurement of concrete highway rough surface parameters by an X-band scatterometer. IEEE Trans Geosci Remote 42(6):1188–1196

    Article  Google Scholar 

  19. Oyama Y, Zhen L, Tanabe T et al (2009) Sub-terahertz imaging of defects in building blocks. NDT&E Int 42:28–33

    Article  Google Scholar 

  20. Büyüköztürk O, Yu TY (2009) Far field radar NDT technique for detecting GFRP debonding from concrete. Constr Build Mater 23:1678–1689

    Article  Google Scholar 

  21. Sakagami T, Kubo S (2002) Development of a new non-destructive testing technique for quantitative evaluations of delimitation defects in concrete structures based on phase delay measurement using lock-in thermography. Infrared Phys Technol 43:311–316

    Article  Google Scholar 

  22. Titman DJ (2001) Applications of thermography in non-destructive testing of structures. NDT&E Int 34:149–154

    Article  Google Scholar 

  23. Clark MR, McCann DM, Forde MC (2003) Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT&E Int 39:265–275

    Article  Google Scholar 

  24. Maierhofer C, Arndt R, Röllig M (2007) Influence of concrete properties on the detection of voids with impulse-thermography. Infrared Phys Technol 49:213–217

    Article  Google Scholar 

  25. Maierhofer C, Arndt R, Rieck C et al (2006) Application of impulse-thermography for non-destructive assessment of concrete structures. Cem Concr Compos 28:393–401

    Article  Google Scholar 

  26. Washer G (1998) Developments for the non-destructive evaluation of highway bridges in the USA. NDT&E Int 34:245–249

    Article  Google Scholar 

  27. Duffy GS, Farina SB (2009) Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures. Constr Build Mater 23:2746–2751

    Article  Google Scholar 

  28. McCarter WJ, Chrisp TM, Butler A et al (2001) Near-surface sensors for condition monitoring of cover-zone concrete. Constr Build Mater 15:115–124

    Article  Google Scholar 

  29. McCarter WJ, Starrs G, Chrisp TM (2000) Electrical conductivity, diffusion, and permeability of Portland cement-based mortars. Cem Concr Res 30:1395–1400

    Article  Google Scholar 

  30. Spencer BF Jr, Ruiz-Sandoval ME, Kurata N (2004) Smart sensing technology: opportunities and challenges. Struct Control Health Monitor 11:349–386

    Article  Google Scholar 

  31. Akyildiz IF, Su W, Sankarasubramaniam E et al (2002) A survey on sensor networks. IEEE Commun Mag 40:102–114

    Article  Google Scholar 

  32. Hsieh YM, Hung YC (2009) A scalable IT infrastructure for automated monitoring systems based on the distributed computing technique using simple object access protocol web-services. Automat Constr 18:424–433

    Article  Google Scholar 

  33. Park G, Rosing T, Todd MD et al (2008) Energy harvesting for structural health monitoring sensor networks. J Infrastruct Syst 14(1):64–79

    Article  Google Scholar 

  34. Beefy SP, Torah RN, Tudor MJ et al (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromec Microeng 17:1257–1265

    Article  Google Scholar 

  35. Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142

    Article  Google Scholar 

  36. Erturk A (2011) Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations. J Intell Mater Syst Struct 22(17):1959–1973

    Article  Google Scholar 

  37. Catbas FN, Aktan AE (2002) Condition and damage assessment: issues and some promising indices. J Struct Eng 128(8):1026–1036

    Article  Google Scholar 

  38. Malekzabeh M, Atia G, Catbas FN (2015) Performance-based structural health monitoring through an innovative hybrid data interpretation framework. J Civ Struct Health Monitor 5:287–305

    Article  Google Scholar 

  39. Amini F, Karami K (2012) Damage detection algorithm based on identified system Markov parameters (DDA/ISMP) in building structures with limited sensors. Smart Mater Struct 21(5):055010

    Article  Google Scholar 

  40. Hsieh YM, Hung YC (2009) A scalable IT infrastructure for automated monitoring systems based on distributed computing technique using simple object access protocol Web-services. Automat Constr 18:424–433

    Article  Google Scholar 

  41. Aktan AE, Catbas FN, Grimmelsman KA et al (2000) Issues in infrastructure health monitoring for management. J Eng Mech-ASCE 126(7):711–724

    Article  Google Scholar 

  42. Li H, Ou J (2016) The state of the art in structural health monitoring of cable-stayed bridges. J Civ Struct Health Monitor 6:43–67

    Article  Google Scholar 

  43. Jang S, Jo H, Cho S et al (2010) Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation. Smart Struct Syst 6(5–6):439–459

    Article  Google Scholar 

  44. Cho S, Jo H, Jang S et al (2010) Structural health monitoring of a cable-stayed bridge using smart sensor technology: data analysis. Smart Struct Syst 6(5–6):461–480

    Article  Google Scholar 

  45. Hoult NA, Fidler PRA, Hill PG et al (2010) Long-term wireless structural health monitoring of the Ferriby Road Bridge. J Bridge Eng 15:153–159

    Article  Google Scholar 

  46. Hoult NA, Fidler PRA, Hill PG et al (2008) Wireless structural health monitoring at the Humber Bridge UK. In: Proceedings of the institution of civil engineers-bridge engineering, vol 161 no 4, pp 189–195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Joseph Schemmel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schemmel, P.J., Schemmel, J.J., Humphries, E.D. (2018). Technology-Enhanced Infrastructure. In: McClellan, S., Jimenez, J., Koutitas, G. (eds) Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-319-59381-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59381-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59380-7

  • Online ISBN: 978-3-319-59381-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics