Skip to main content

Critical Current Anisotropy in Relation to the Pinning Landscape

  • Chapter
  • First Online:
Vortices and Nanostructured Superconductors

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 261))

Abstract

The critical current of superconductors is determined by the interaction of vortices with the intrinsic and extrinsic defects in the material. Analyzing the critical current density to produce structure-property relationships has not proved easy for the anisotropic superconductors. The difficulty partly results from having two sources of anisotropy, the anisotropy in the vortex cross section and the anisotropy of the defects themselves. In this chapter we survey models of superconductor behavior which have been used to elucidate the structure property relationships. These include scaling approaches such as Blatter scaling and variations on this approach. We then look at more direct models of pinning behavior and the difficulties these models encounter. Finally we examine probabilistic or maximum entropy modelling as a means to understand the relationship between critical currents and the pinning landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. MacManus-Driscoll et al., Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x + BaZrO3. Nat. Mater. 3, 439 (2004)

    Article  ADS  Google Scholar 

  2. J. Gutiérrez et al., Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films. Nat. Mater. 6, 367 (2007)

    Google Scholar 

  3. V. Selvamanickam et al., High critical currents in heavily doped (Gd, Y) Ba2Cu3Ox superconductor tapes. Appl. Phys. Lett. 106, 032601 (2015)

    Article  ADS  Google Scholar 

  4. M. Miura et al., Mixed pinning landscape in nanoparticle-introduced YGdBa2Cu3Oy films grown by metal organic deposition. Phys. Rev. B 83, 184519 (2011)

    Article  ADS  Google Scholar 

  5. S.R. Foltyn et al., Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631 (2007)

    Article  ADS  Google Scholar 

  6. A. Goyal et al., Irradiation free, columnar defects comprised of self-assmbled nanodots and nanorods resulting in strongly enhanced flux pinning in YBa2Cu3O7-d films. Supercond. Sci. Technol. 18, 1533 (2005)

    Article  ADS  Google Scholar 

  7. M. Igarashi et al., Advanced development of IBAD/PLD coated conductors at FUJIKURA. Phys. Procedia 36, 1412–1416 (2012)

    Article  ADS  Google Scholar 

  8. G. Blatter, M. V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994)

    Google Scholar 

  9. D.-X. Chen, J.J. Moreno, A. Hernando A. Sanchez, B.-Z. Li, Nature of the driving force on an Abrikosov vortex. Phys Rev. B. 57, 5059 (1998)

    Google Scholar 

  10. J. Castro, A. Lopez, Comments on the force on pinned vortices in superconductors. J. Low Temp. Phys. 135, 15 (2004)

    Article  ADS  Google Scholar 

  11. G. Blatter, V.B. Geshkenbein, A.I. Larkin, From isotropic to anisotropic superconductors: a scaling approach. Phys. Rev. Lett. 68, 875–878 (1992)

    Article  ADS  Google Scholar 

  12. Z. Hao, J.R. Clem, Angular dependencies of the thermodynamic and electromagnetic properties of the high—Tc superconductors in the mixed state. Phys. Rev. B. 46, 4833–5856 (1992)

    Article  Google Scholar 

  13. X. Xu, J. Fang, X. Cao, K. Li, W. Yao, Z. Qi, Angular dependence of the critical current density for epitaxial YBa2Cu3O7-d thin film. Solid State Commun. 92, 501–504 (1994). X. Xu, J. Fang, X.W. Cao and K Li, A scaling formula of critical current density for anisotropic superconductors. J. Phys D: Appl. Phys. 29, 2473 (1996)

    Google Scholar 

  14. G.R. Kumar, M.R. Koblischka, J.C. Martinez, R. Griessen, B. Dam, J. Rector, Angular scaling of critical current measurements on laser-ablated YBa2Cu3O7−d thin films. Physica C 235–240, 3053 (1994)

    Article  Google Scholar 

  15. L. Civale et al., Understanding high critical currents in YBa2Cu3O7 thin films and coated conductors. J. Low. Temp. Phys. 135, 87 (2004)

    Google Scholar 

  16. L. Civale et al., Angular-dependent vortex pinning mechanisms in YBa2Cu3O7 coated conductors and thin films. Appl. Phys. Lett. 84, 2121 (2004)

    Article  ADS  Google Scholar 

  17. J. Gutiérrez et al., Anisotropic c-axis pinning in interfacial self-assembled nanostructured trifluoroacetate-YBa2Cu3O7-x films. Appl. Phys. Lett. 94, 172513 (2009)

    Article  ADS  Google Scholar 

  18. A. Llordés et al., Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat. Mater. 11, 329 (2012)

    Article  ADS  Google Scholar 

  19. S.C. Wimbush, N.M. Strickland, N.J. Long, Low-Temperature scaling of the critical current in 1G HTS wires. IEEE Trans. Appl. Supercond. 25, 6400105 (2015)

    Article  Google Scholar 

  20. G. Grasso, Processing of high Tc conductors: the compound B,Pb(2223), in Handbook of Superconducting Materials v1, ed. by D.A. Cardwell, D.S. Ginley (IoP Publishing, Bristol and Philadelphia, 2003)

    Google Scholar 

  21. N. Clayton, N. Musolino, E. Giannini, V. Garnier, R. Flükiger, Growth and superconducting properties of Bi2Sr2Ca2Cu3O10 single crystals. Supercond. Sci. Technol. 17, S563–S567 (2004)

    Article  ADS  Google Scholar 

  22. D.K. Hilton, A.V. Gavrilin, U.P. Trociewitz, Practical fit functions for transport critical current versus field magnitude and angle data from (RE)BCO coated conductors at fixed low temperatures and in high magnetic fields. Supercond. Sci. Technol. 28, 074002 (2015)

    Article  ADS  Google Scholar 

  23. E. Pardo, M. Vojenciak, F. Gomory, J. Souc, Low-magnetic-field dependence and anisotropy of the critical current density in coated conductors. Supercond. Sci. Technol. 24, 065007 (2011)

    Article  ADS  Google Scholar 

  24. V. Mishev et al., Interaction of vortices in anisotropic superconductors with isotropic defects. Supercond. Sci. Technol. 28, 102001 (2015)

    Article  ADS  Google Scholar 

  25. H. Matsui et al., Dimpling in critical current density versus magnetic field angle in YBa2Cu3O7 films irradiated with 3-MeV gold ions. J. Appl. Phys. 114, 233911 (2013)

    Article  ADS  Google Scholar 

  26. E.J. Kramer, Scaling laws for flux pinning in hard superconductors. J. Appl. Phys. 44, 1360 (1973)

    Article  ADS  Google Scholar 

  27. N.J. Long, S.C. Wimbush, Comment on Dimpling in critical current density versus magnetic field angle in YBa2Cu3O7 films irradiated with 3-MeV gold ions [J. Appl. Phys. 114, 233911 (2013)]. J. Appl. Phys. 115, 136101 (2014)

    Article  ADS  Google Scholar 

  28. M. Tachiki, S. Takahashi, Anisotropy of critical current in layered oxide superconductors. Solid State Commun. 72, 1083–6 (1989). M. Tachiki and S. Takahashi, “Intrinsic pinning in cuprate superconductors. Appl. Supercond. 2, 305–313 (1994)

    Article  Google Scholar 

  29. C.J. van der Beek, M. Konczykowski, R. Prozorov, Anisotropy of strong pinning in multi-band superconductors. Supercond. Sci. Technol. 25, 084010 (2012)

    Article  ADS  Google Scholar 

  30. G.P. Mikitik, E.H. Brandt, Flux-line pinning by point defects in anisotropic biaxial type-II superconductors. Phys. Rev. B 79, 020506(R) (2009). Flux-line pinning by point defects in anisotropic type-II superconductors. Physica C 470, S892–S893 (2010)

    Article  ADS  Google Scholar 

  31. L. Embon et al., Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Sci Rep. 5, 7598 (2015)

    Article  Google Scholar 

  32. O.M. Auslaender et al., Mechanics of individual isolated vortices in a cuprate superconductor. Nat. Phys. 5, 35 (2009)

    Article  Google Scholar 

  33. Q. Du, Numerical approximations of the Ginzburg-Landau models for superconductivity. J. Math. Phys. 46, 095109 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. I.A. Sadovskyy, A.E. Koshelev, C.L. Phillips, D.A. Karpeyev, A. Glatza, Stable large-scale solver for Ginzburg-Landau equations for superconductors. J. Comput. Phys. 294, 639 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. N.J. Long, Model for the angular dependence of critical currents in technical superconductors. Supercond. Sci. Technol. 21, 025007 (2008)

    Article  ADS  Google Scholar 

  36. S.C. Wimbush, N.J. Long, The interpretation of the field angle dependence of the critical current in defect-engineered superconductors. New J. Phys. 14, 083017 (2012)

    Article  ADS  Google Scholar 

  37. J.N. Kapur, Maximum-Entropy Models in Science and Engineering, 2nd edn. (New Age, New Delhi, India, 2009)

    MATH  Google Scholar 

  38. N.J. Long, Maximum entropy distributions describing critical currents in superconductors. Entropy 15, 2585 (2013)

    Article  ADS  MATH  Google Scholar 

  39. T. Petrisor et al., The vortex path model analysis of the field angle dependence of the critical current density in nanocomposite YBa2Cu3O7-x-BaZrO3 films obtained by low fluorine chemical solution deposition. J Supercond. Nov. Magn. 27, 2493–2500 (2014)

    Article  Google Scholar 

  40. P. Paturi, The vortex path model and angular dependence of Jc in thin YBCO films deposited from undoped and BaZrO3 doped targets. Supercond. Sci. Technol. 23, 025030 (2010)

    Article  ADS  Google Scholar 

  41. M. Malmivirta et al., Three ranges of the angular dependence of critical current of BaZrO3 doped YBa2Cu3O7-d thin films grown at different temperatures. Thin Solid Films 562, 554–560 (2014)

    Article  ADS  Google Scholar 

  42. M. Malmivirta et al., The angular dependence of the critical current of baCeO3 doped YBa2Cu3O6+x thin films. IEEE Trans. Appl. Supercond. 25, 6603305 (2015)

    Article  Google Scholar 

  43. J. Hänisch, K. Iida, F. Kurth, T. Thersleff, S. Trommler, E. Reich, R. Hühne, L. Schultz, B. Holzapfel, the effect of 45° grain boundaries and associated Fe particles on Jc and resistivity in Ba(Fe 0.9Co 0.1)2As2 thin films. Adv. Cryogenic Eng. 1574, 260 (2014)

    Google Scholar 

  44. P. Mikheenko et al., Integrated nanotechnology of pinning centers in YBa2Cu3Ox films. Supercond. Sci. Technol. 23, 125007 (2010)

    Article  ADS  Google Scholar 

  45. E.F. Talantsev et al., Hole doping dependence of critical current density in YBa2Cu3O7 conductors. Appl. Phys. Lett. 104, 242601 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick J. Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Long, N.J. (2017). Critical Current Anisotropy in Relation to the Pinning Landscape. In: Crisan, A. (eds) Vortices and Nanostructured Superconductors. Springer Series in Materials Science, vol 261. Springer, Cham. https://doi.org/10.1007/978-3-319-59355-5_4

Download citation

Publish with us

Policies and ethics