Advertisement

Towards a Taxonomy of Constraints in Demand-Side-Management-Methods for a Residential Context

  • Dennis BehrensEmail author
  • Thorsten Schoormann
  • Ralf Knackstedt
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 288)

Abstract

To address current challenges in the management of energy grids, Demand-Side-Management (DSM) is one possibility. In this field various approaches exist but consider often different constraints regarding appliances. This paper aims at identifying these constraints through a triangulation: we conducted two literature reviews and several expert interviews simultaneously to derive a taxonomy of (DSM) load constraints. This taxonomy grows during the research process and contains at the end five constraints, a short description, examples of appliances for each constraint and a mathematical representation. This taxonomy can be used for future research, e.g. for designing, evaluating or benchmarking DSM-Methods.

Keywords

Demand-Side-Management Demand-Side-Management-Methods Constraints Taxonomy Residential context 

References

  1. 1.
    United Nations: Millenium development goals and beyond (2015). http://www.un.org/millenniumgoals/bkgd.shtml. Accessed 30 Jan 2017
  2. 2.
    Barbato, A., Capone, A.: Optimization models and methods for demand-side management of residential users: a survey. Energies 2014 7(9), 5787–5824 (2014)Google Scholar
  3. 3.
    Feuerriegel, S., Bodenbenner, P., Neumann, D.: Value and granularity of ICT and smart meter data in demand response systems. Energ. Econ. 54, 1–10 (2016)CrossRefGoogle Scholar
  4. 4.
    Balijepalli, M.V.S.K., Pradhan, V., Khaparde, S.A., Shereef, R.M.: Review of demand response under smart grid paradigm. In: Proceedings of Innovative Smart Grid Technologies (2011)Google Scholar
  5. 5.
    Gellings, C.W., Chamberlin, J.H.: Demand-Side Management: Concepts and Methods. Prentice Hall, Englewood Cliffs (1987)Google Scholar
  6. 6.
    National Institute of Standards and Technology (NIST), U.S. Dep. of Com.: NIST Framework and Roadmap for Smart Grid Interoperability Standards. Special Publication (2010)Google Scholar
  7. 7.
    Wilkes, J., Moccia, J.: Wind in Power - 2010 European Statistics (2011)Google Scholar
  8. 8.
    Bassamzadeha, N., Ghanemb, R., Luc, S., Kazemitabard, S.J.: Robust scheduling of smart appliances with uncertain electricity prices in a heterogeneous population. Energ. Build. 84, 537–547 (2014)CrossRefGoogle Scholar
  9. 9.
    Stüdli, S., Crisostomi, E., Middleton, R., Braslavsky, J., Shorten, R.: distributed load management using additive increase multiplicative decrease based techniques. In: Rajakaruna, S., Shahnia, F., Ghosh, A. (eds.) Plug In Electric Vehicles in Smart Grids, pp. 173–202. Springer, Singapore (2015)Google Scholar
  10. 10.
    Bashash, S., Fathy, H.K.: Modeling and control of aggregate air conditioning loads for robust renewable power management. Trans. Control Syst. 21, 1318–1327 (2013)CrossRefGoogle Scholar
  11. 11.
    Costanza, E., Fischer, J.E., Colley, J.A., Rodden, T., Ramchurn, S.D., Jennings, N.R.: Doing the laundry with agents: a field trial of a future smart energy system in the home. In: Proceedings of ACM Conference on Human Factors in Computing Systems (2014)Google Scholar
  12. 12.
    Beaude, O., Lasaulce, S., Hennebel, M.: Charging games in networks of electrical vehicles. In: Proceedings of Network Games, Control and Optimization (NetGCooP) (2012)Google Scholar
  13. 13.
    Kwak, J., Varakantham, P., Maheswaran, R., Tambe, M., Jazizadeh, F., Kavulya, G., Klein, L., Becerik-Gerber, B., Hayes, T., Wood, W.: SAVES: a sustainable multiagent application to conserve building energy considering occupants. In: Proceedings of International Conference on Autonomous Agents and Multiagent Systems (2012)Google Scholar
  14. 14.
    Serkan Özdemir, S., Unland, R.: A winner agent in a smart grid simulation platform. In: International Conference on Intelligent Agent Technology (IAT 2015) (2015)Google Scholar
  15. 15.
    Gerwig, C., Behrens, D., Knackstedt, R., Lessing, H.: Demand side management in residential contexts – a literature review. In: Proceedings of the Informatik, Cottbus (2015)Google Scholar
  16. 16.
    Al-Sumaiti, A.S., Ahmed, M.H., Salama, M.M.A.: Smart home activities: a literature review. Electr. Pow. Compo. Syst. 42, 294–305 (2014)CrossRefGoogle Scholar
  17. 17.
    Gatsis, N., Giannakis, G.B.: Residential demand response with interruptible tasks: duality and algorithms. In: Conference on Decision and Control and European Control Conference (CDC-ECC) (2011)Google Scholar
  18. 18.
    Bahrami, S., Parniani, M., Vafaeimehr, A.: A modified approach for residential load scheduling using smart meters. In: International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe) (2012)Google Scholar
  19. 19.
    Kim, S.-J., Giannakis, G.B.: Scalable and robust demand response with mixed-integer constraints. Trans. Smart Grid 4(4), 2089–2099 (2013)CrossRefGoogle Scholar
  20. 20.
    Yang, P., Chavali, P., Gilboa, E., Nehorai, A.: Parallel load schedule optimization with renewable distributed generators in smart grids. In: International Conference on Smart Grid Communications (SmartGridComm) (2012)Google Scholar
  21. 21.
    Karmakar, G., Kabra, A., Ramamritham, K.: Coordinated scheduling of thermostatically controlled real-time systems under peak power constraint. In: Real-Time and Embedded Technology and Applications Symposium (RTAS) (2013)Google Scholar
  22. 22.
    Mangiatordi, F., Pallotti, E., Vecchio, P.D., Leccese, F.: Power consumption scheduling for residential buildings. In: International Conference on Environment and Electrical Engineering (EEEIC) (2012)Google Scholar
  23. 23.
    Thomas, A.G., Jahangiri, P., Wu, D., Cai, C., Zhao, H., Aliprantis, D.C., Tesfatsion, L.: Intelligent residential air-conditioning system with smart-grid functionality. IEEE Trans. Smart Grid 3(4), 2240–2251 (2012)CrossRefGoogle Scholar
  24. 24.
    Chavali, P., Yang, P., Nehorai, A.: A distributed algorithm of appliance scheduling for home energy management system. Trans. Smart Grid 5, 282–290 (2014)CrossRefGoogle Scholar
  25. 25.
    Li, N., Chen, L., Low, S.H.: Optimal demand response based on utility maximization in power networks. In: Proceedings of Power and Energy Society General Meeting (2011)Google Scholar
  26. 26.
    Weckx, S., Driesen, J., D’hulst, R.: Distributed residential load control of binary behaving loads. In: PowerTech (POWERTECH) (2013)Google Scholar
  27. 27.
    Rassaei, F., Soh, W.-S., Chua, K.-C.: Demand response for residential electric vehicles with random usage patterns in smart grids. Trans. Sustain. Energ. 6(4), 1367–1376 (2015)CrossRefGoogle Scholar
  28. 28.
    Rao, M.R., Kuri, J., Prabhakar, T.V.: Towards optimal load management with day ahead pricing. In: Proceedings of the International Conference on Communication Systems and Networks (COMSNETS) (2015)Google Scholar
  29. 29.
    Ozturk, X., Jha, P., Kumar, P., Lee, G.: A gateway sensor network architecture for home energy management. In: International Conference on Collaboration Technologies and Systems (CTS) (2013)Google Scholar
  30. 30.
    Nickerson, R., Muntermann, J., Varshney, U.: Taxonomy development in information systems: a literature survey and problem statement. In: Proceedings of the 16th Americas Conference on Information Systems (AMCIS) (2010)Google Scholar
  31. 31.
    vomBrocke, J., Simons, A., Niehaves, B., Reimer, K., Plattfaut, R., Cleven, A.: Re-constructing the giant: on the importance of rigour in documenting the literature search process. In: Proceedings of European Conference on Information Systems (ECIS) (2009)Google Scholar
  32. 32.
    Behrens, D., Schoormann, T., Knackstedt, R.: Datensets für demand-side-management – literatur-review-Basierte analyse und Forschungsagenda. In: Mayr, H.C., Pinzger, M. (Hrsg.) INFORMATIK 2016, Klagenfurt, Austria (2016)Google Scholar
  33. 33.
    Goudarzi, H., Hatami, S., Pedram, M.: Demand-side load scheduling incentivized by dynamic energy prices. In: Proceedings of the International Conference on Smart Grid Communications (SmartGridComm) (2011)Google Scholar
  34. 34.
    Barbato, A., Capone, A., Carello, G., Delfanti, M., Merlo, M., Zaminga, A.: House energy demand optimization in single and multi-user scenarios. In: International Conference on Smart Grid Communications (SmartGridComm) (2011)Google Scholar
  35. 35.
    Agnetis, A., de Pascale, G., Detti, P., Vicino, A.: Load scheduling for household energy consumption optimization. Trans. Smart Grid 4(4), 2364–2373 (2013)CrossRefGoogle Scholar
  36. 36.
    Deng, R., Yang, Z., Chen, J., Chow, M.Y.: Load scheduling with price uncertainty and temporally-coupled constraints in smart grids. IEEE Trans. Power Syst. 29(6), 2823–2834 (2014)CrossRefGoogle Scholar
  37. 37.
    Hatami, S., Pedram, M.: Minimizing the electricity bill of cooperative users under a quasi-dynamic pricing model. In: IEEE International Conference on Smart Grid Communications (SmartGridComm) (2010)Google Scholar
  38. 38.
    Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)CrossRefGoogle Scholar
  39. 39.
    Chang, T.H., Alizadeh, M., Scaglione, A.: Real-time power balancing via decentralized coordinated home energy scheduling. IEEE Trans. Smart Grid 4(3), 1490–1504 (2013)CrossRefGoogle Scholar
  40. 40.
    Mohesenian-Rad, A.-H., Wong, V.W.S., Jatskevich, J., Schober, R., Leon-Garcia, A.: Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010)CrossRefGoogle Scholar
  41. 41.
    Mohesenian-Rad, A.-H., Wong, V.W.S., Jatskevich, J., Schober, R: Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In: Proceedings of Innovative Smart Grid Technologies (ISGT) (2010)Google Scholar
  42. 42.
    Zhao, W., Cooper, P., Perez, P., Ding, L.: Cost-driven residential energy management for adaption of smart grid and local power generation. In: Proceedings of the International Symposium of Next Generation Infrastructure (2013)Google Scholar
  43. 43.
    Keerthisinghe, C., Verbic, G., Chapman, A.C.: Evaluation of a multi-stage stochastic optimization framework for energy management of residential PV-storage systems. In: Australasian Universities Power Engineering Conference (AUPEC) (2014)Google Scholar
  44. 44.
    Castillo-Cagigal, M., Gutiérrez, A., Monasterio-Huelin, F., Caamaño-Martín, E., Masa, D., Jiménez-Leube, J.: A semi-distributed electric demand-side management system with PV generation for self-consumption enhancement. Energy Convers. Manage. 52(7), 2659–2666 (2011)CrossRefGoogle Scholar
  45. 45.
    McNamara, P., McLoone, S.: Hierarchical demand response using Dantzig-Wolfe decomposition. In: Proceedings of Innovative Smart Grid Technologies Europe (ISGT EUROPE) (2013)Google Scholar
  46. 46.
    Mohammad, F., Mehrdad, G.: Localized demand-side management in electric power systems. In: Iranian Conference on Smart Grids (ICSG) (2012)Google Scholar
  47. 47.
    Verschae, R., Kato, T., Matsuyama, T.: A distributed coordination framework for on-line scheduling and power demand balancing of households communities. In: European Control Conference (ECC) (2014)Google Scholar
  48. 48.
    Verschae, R., Kato, T., Matsuyama, T.: A distributed coordination framework for on-line scheduling and power demand balancing of households communities. In: European Control Conference (ECC)(2014)Google Scholar
  49. 49.
    Song, L., Schaar, M.V.D.: Non-stationary demand side management method for smart grids. In: International Conference on Acoustics, Speech and Signal Processing (2014)Google Scholar
  50. 50.
    Ashfaq, A., Yingyun, S., Khan, A.Z.: Optimization of economic dispatch problem integrated with stochastic demand side response. In: IEEE International Conference on Intelligent Energy and Power Systems (IEPS) (2014)Google Scholar
  51. 51.
    Lunden, J., Werner, S., Koivunen, V.: Distributed demand-side management with load uncertainty. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)Google Scholar
  52. 52.
    De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q., Wang, D.: Optimal task and energy scheduling in dynamic residential scenarios. In: 9th International Symposium on Neural Networks (2012)Google Scholar
  53. 53.
    Soliman, H.M., Leon-Garcia, A.: Game-theoretic demand-side management with storage devices for the future smart grid. Trans. Smart Grid 5, 1475–1485 (2014)CrossRefGoogle Scholar
  54. 54.
    Liu, P., Fu, Y.: Construction of multiband uncertainty set for building energy management with uncertain loads and solar power. In: PES General Meeting (2014)Google Scholar
  55. 55.
    Miao, H., Huang, X., Chen, G.: A genetic evolutionary task scheduling method for energy efficiency in smart homes. Int. Rev. Electr. Eng. 7, 5897–5904 (2012)Google Scholar
  56. 56.
    Kim, S-J., Giannakis, G.B.: Efficient and scalable demand response for the smart power grid. In: International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2011)Google Scholar
  57. 57.
    Ali, S.Q., Maqbool, S.D., Ahamed, T.P.I., Malik, N.H.: Pursuit algorithm for optimized load scheduling. In: Power Engineering and Optimization Conference (PEDCO) (2012)Google Scholar
  58. 58.
    Lin, Y.-B.: Optimal threshold policy for in-home smart grid with renewable generation integration. Trans. Parallel Distrib. Syst. 26, 1096–1105 (2014)Google Scholar
  59. 59.
    Huang, Y., Mao, S., Nelms, R.M.: Smooth electric power scheduling in power distribution networks. In: Globecom Workshops (GC Wkshps) (2012)Google Scholar
  60. 60.
    Lee, J., Park, G.-L., Kim, H.-J.: Multithreaded power consumption scheduler based on a genetic algorithm. In: Kim, T., et al. (eds.) FGCN 2011. CCIS, vol. 265, pp. 47–52. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-27192-2_6 CrossRefGoogle Scholar
  61. 61.
    Hu, T., Chu, X., Zhang, W., Liu, Y.: An optimal day-ahead dispatch strategy for deferrable loads. In: International Conference on Power System Technology (POWERCON) (2014)Google Scholar
  62. 62.
    Zang, C., Qin, X., Li, X., Jin, X., Che, W.: Simulated annealing based fuzzy Markov game energy management for smart grids. In: Control and Decision Conference (CCDC) (2013)Google Scholar
  63. 63.
    Lee, J., Park, G.-L.: Power load distribution for wireless sensor and actuator networks in smart grid buildings. Int. J. Distrib. Sens. Netw. 9(1) (2013)Google Scholar
  64. 64.
    Bu, H., Nygard, K.E.: Adaptive scheduling of smart home appliances using fuzzy goal programming. In: The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications (ADAPTIVE) (2014)Google Scholar
  65. 65.
    Maqbool, S.D., Ahamed, T.P.I., Ali, S.Q., Pazheri, F.R., Malik, N.H.: Comparison of pursuit and ε-Greedy algorithm for load scheduling under real time pricing. In: International Conference on Power and Energy (PECon) (2012)Google Scholar
  66. 66.
    Alam, M.R., St-Hilaire, M., Kunz, T.: Cost optimization via rescheduling in smart grids – a linear programming approach. In: International Conference on Smart Energy Grid Engineering (SEGE) (2013)Google Scholar
  67. 67.
    Ali, S.Q., Maqbool, S.D., Ahamed, T.P.I., Malik, N.H.: Load scheduling with maximum demand and time of use pricing for microgrids. In: Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS) (2013)Google Scholar
  68. 68.
    Alvarez, C., Malhame, R.P., Gabaldon, A.: A class of models for load management application and evaluation revisited. Trans. Power Syst. 7, 1435–1443 (1992)CrossRefGoogle Scholar
  69. 69.
    Behrens, D., Gerwig, C.: Selbstregulierende Verbraucher im Smart Grid: Design einer Infrastruktur mit Hilfe eines Multi-Agenten-Systems. In: Proceedings of Multikonferenz der Wirtschaftsinformatik (MKWI), Paderborn, Germany (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dennis Behrens
    • 1
    Email author
  • Thorsten Schoormann
    • 1
  • Ralf Knackstedt
    • 1
  1. 1.Department of Information SystemsUniversity of HildesheimHildesheimGermany

Personalised recommendations