How to Make Process Model Matching Work Better? An Analysis of Current Similarity Measures

  • Fakhra Jabeen
  • Henrik LeopoldEmail author
  • Hajo A. Reijers
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 288)


Process model matching techniques aim at automatically identifying activity correspondences between two process models that represent the same or similar behavior. By doing so, they provide essential input for many advanced process model analysis techniques such as process model search. Despite their importance, the performance of process model matching techniques is not yet convincing and several attempts to improve the performance have not been successful. This raises the question of whether it is really not possible to further improve the performance of process model matching techniques. In this paper, we aim to answer this question by conducting two consecutive analyses. First, we review existing process model matching techniques and give an overview of the specific technologies they use to identify similar activities. Second, we analyze the correspondences of the Process Model Matching Contest 2015 and reflect on the suitability of the identified technologies to identify the missing correspondences. As a result of these analyses, we present a list of three specific recommendations to improve the performance of process model matching techniques in the future.


Process model matching Performance improvement Weakness analysis Activity similarity 


  1. 1.
    La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 11 (2013)Google Scholar
  2. 2.
    Weidlich, M., Mendling, J., Weske, M.: A foundational approach for managing process variability. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 267–282. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21640-4_21 CrossRefGoogle Scholar
  3. 3.
    Jin, T., Wang, J., La Rosa, M., Ter Hofstede, A., Wen, L.: Efficient querying of large process model repositories. Comput. Ind. 64(1), 41–49 (2013)CrossRefGoogle Scholar
  4. 4.
    Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of business process models. In: 12th International IEEE Enterprise Distributed Object Computing Conference EDOC 2008, pp. 85–94. IEEE (2008)Google Scholar
  5. 5.
    Dumas, M., GarcíA-BañUelos, L., La Rosa, M., Uba, R.: Fast detection of exact clones in business process model repositories. Inf. Syst. 38(4), 619–633 (2013)CrossRefGoogle Scholar
  6. 6.
    Uba, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: Clone detection in repositories of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 248–264. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23059-2_20 CrossRefGoogle Scholar
  7. 7.
    Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13094-6_37 CrossRefGoogle Scholar
  8. 8.
    Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.: Probabilistic optimization of semantic process model matching. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32885-5_25 CrossRefGoogle Scholar
  9. 9.
    Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall of process model matching by improved activity label matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40176-3_17 CrossRefGoogle Scholar
  10. 10.
    Sonntag, A., Hake, P., Fettke, P., Loos, P.: An approach for semantic business process model matching using supervised machine learning. In: Resarch in Progress Papers, p. 47 (2016)Google Scholar
  11. 11.
    Cayoglu, U., et al.: Report: the process model matching contest 2013. In: Lohmann, N., Song, M., Wohed, P. (eds.) Business Process Management Workshops. Lecture Notes in Business Information Processing, vol. 171, pp. 442–463. Springer, Cham (2013)CrossRefGoogle Scholar
  12. 12.
    Antunes, G., Bakhshandeh, M., Borbinha, J., Cardoso, J., Dadashnia, S., Di Francescomarino, C., Dragoni, M., Fettke, P., Gal, A., Ghidini, C., et al.: The process model matching contest 2015. In: Proceedings of the 6th International Workshop on Enterprise Modelling and Information Systems Architectures (2015)Google Scholar
  13. 13.
    Weidlich, M., Sagi, T., Leopold, H., Gal, A., Mendling, J.: Predicting the quality of process model matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 203–210. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40176-3_16 CrossRefGoogle Scholar
  14. 14.
    Gal, A.: Uncertain schema matching. Synth. Lect. Data Manage. 3(1), 1–97 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business process models. In: Proceedings of the Fourth Asia-Pacific Conference on Conceptual Modelling, pp. 71–80 (2007)Google Scholar
  16. 16.
    van Dongen, B., Dijkman, R., Mendling, J.: Measuring similarity between business process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69534-9_34 CrossRefGoogle Scholar
  17. 17.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03848-8_5 CrossRefGoogle Scholar
  18. 18.
    Dijkman, R., Dumas, M., Garcia-Banuelos, L., Kaarik, R.: Aligning business process models. In: Enterprise Distributed Object Computing Conference, pp. 45–53. IEEE (2009)Google Scholar
  19. 19.
    Dijkman, R., Dumas, M., Van Dongen, B., Krik, R., Mendling, J.: Similarity of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  20. 20.
    Yan, Z., Dijkman, R., Grefen, P.: Fast business process similarity search with feature-based similarity estimation. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16934-2_8 CrossRefGoogle Scholar
  21. 21.
    Niemann, M., Siebenhaar, M., Schulte, S., Steinmetz, R.: Comparison and retrieval of process models using related cluster pairs. Comput. Ind. 63(2), 168–180 (2012)CrossRefGoogle Scholar
  22. 22.
    Klinkmüller, C., Leopold, H., Weber, I., Mendling, J., Ludwig, A.: Listen to me: improving process model matching through user feedback. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 84–100. Springer, Cham (2014). doi: 10.1007/978-3-319-10172-9_6 Google Scholar
  23. 23.
    Liu, K., Yan, Z., Wang, Y., Wen, L., Wang, J.: Efficient syntactic process difference detection using flexible feature matching. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 103–116. Springer, Cham (2014). doi: 10.1007/978-3-319-08222-6_8 Google Scholar
  24. 24.
    Fengel, J.: Semantic technologies for aligning heterogeneous business process models. Bus. Process Manage. J. 20(4), 549–570 (2014)CrossRefGoogle Scholar
  25. 25.
    Ling, J., Zhang, L., Feng, Q.: Business process model alignment: an approach to support fast discovering complex matches. In: Mertins, K., Bénaben, F., Poler, R., Bourriéres, J.P. (eds.) Enterprise Interoperability VI. Proceedings of the I-ESA Conferences, vol. 7, pp. 41–51. Springer, Cham (2014)CrossRefGoogle Scholar
  26. 26.
    Makni, L., Haddar, N.Z., Ben-Abdallah, H.: Business process model matching: an approach based on semantics and structure. In: 12th International Joint Conference on e-Business and Telecommunications (ICETE), vol. 2, pp. 64–71 (2015)Google Scholar
  27. 27.
    Sebu, M.L.: Merging business processes for a common workflow in an organizational collaborative scenario. In: Control and Computing, System Theory, pp. 134–139 (2015)Google Scholar
  28. 28.
    Belhoul, Y., Haddad, M., Duchêne, E., Kheddouci, H.: String comparators based algorithms for process model matchmaking. In: Ninth International Conference on Services Computing, pp. 649–656. IEEE (2012)Google Scholar
  29. 29.
    Humm, B.G., Fengel, J.: Semantics-based business process model similarity. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) Bus. Inf. Syst. Lecture Notes in Business Information Processing, vol. 117, pp. 36–47. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Weidlich, M., Sheetrit, E., Branco, M.C., Gal, A.: Matching business process models using positional passage-based language models. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 130–137. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41924-9_12 CrossRefGoogle Scholar
  31. 31.
    Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL processes matchmaking for service discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 237–254. Springer, Heidelberg (2006). doi: 10.1007/11914853_15 CrossRefGoogle Scholar
  32. 32.
    Koschmider, A., Oberweis, A.: How to detect semantic business process model variants? In: Proceedings of the 2007 ACM Symposium on Applied Computing, pp. 1263–1264 (2007)Google Scholar
  33. 33.
    Pittke, F., Leopold, H., Mendling, J., Tamm, G.: Enabling reuse of process models through the detection of similar process parts. In: La Rosa, M., Soffer, P. (eds.) Business Process Management Workshops. Lecture Notes in Business Information Processing, vol. 132, pp. 586–597. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Sebu, M.L.: Similarity of Business Process Models in a Modular Design. In: Applied Computational Intelligence and Informatics, pp. 31–36. IEEE (2016)Google Scholar
  35. 35.
    Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  36. 36.
    Kim, S.N., Baldwin, T.: Automatic interpretation of noun compounds using wordnet similarity. In: Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP 2005. LNCS, vol. 3651, pp. 945–956. Springer, Heidelberg (2005). doi: 10.1007/11562214_82 CrossRefGoogle Scholar
  37. 37.
    Kim, S.N., Baldwin, T.: Interpreting semantic relations in noun compounds via verb semantics. In: Proceedings of the COLING/ACL on Main Conference Poster Sessions, pp. 491–498. Association for Computational Linguistics (2006)Google Scholar
  38. 38.
    Bruni, E., Tran, N.K., Baroni, M.: Multimodal distributional semantics. J. Artif. Intell. Res. (JAIR) 49(2014), 1–47 (2014)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Leopold, H., Meilicke, C., Fellmann, M., Pittke, F., Stuckenschmidt, H., Mendling, J.: Towards the automated annotation of process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 401–416. Springer, Cham (2015). doi: 10.1007/978-3-319-19069-3_25 CrossRefGoogle Scholar
  40. 40.
    Kietz, J.U., Volz, R., Maedche, A.: Extracting a domain-specific ontology from a corporate intranet. In: Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, pp. 167–175. Association for Computational Linguistics (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fakhra Jabeen
    • 1
  • Henrik Leopold
    • 1
    Email author
  • Hajo A. Reijers
    • 1
    • 2
  1. 1.VU University AmsterdamAmsterdamThe Netherlands
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations