Potentials of Digitization in the Tourism Industry – Empirical Results from German Experts

  • Ralf-Christian HärtingEmail author
  • Christopher Reichstein
  • Nina Härtle
  • Jürgen Stiefl
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 288)


The paper deals with the topic digitization in the tourism industry. An empirical study was conducted in Germany based on a theoretical foundation. The aim of this study is to find out how far the digitization has already changed the tourism industry and what is still going to change in order to find potential benefits of digitization in the tourism industry. The results of the structural equation model approach show six main driver (sales increase, classic booking, sharing economy, personalized offers, social media and customer reviews) that have a significant impact on the potential of digitization in the tourism industry.


Potentials Digitization Tourism industry German experts Quantitative study Empirical results 


  1. 1.
    Oskan, L., Boawijk, A.: Airbnb the future of networked hospitality business. J. Tourism Futures 2(1), 22–42 (2015)CrossRefGoogle Scholar
  2. 2.
    Bauer, L., Boksberger, P., Herget, J.: The virtual dimension in tourism: criteria catalogue for the assessment of eTourism applications. In: O’Connor, P., Höpken, W., Gretzel, U. (eds.) Information and Communication technologies in tourism: proceedings of the international conference in Innsbruck 2008, pp. 522–532. Springer, Wien (2008)Google Scholar
  3. 3.
  4. 4.
    Schubert, P., Williams, S.P.: Realising benefits from current ERP and CRM systems implementations: an empirical study. In: Proceedings of the 23rd Bled eConference (eTrust: Implications for the Individual, Enterprises and Society), pp. 476–480 (2010)Google Scholar
  5. 5.
    Phillips, P., Louvieris, P.: Performance measurement systems in tourism, hospitality, and leisure small medium-sized enterprises: a balanced scorecard perspective. J. Travel Res. 44(2), 201–211 (2005)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Härting, R., Schmidt, R., Möhring, M.: Nutzenpotenziale von Industrie 4.0 und Digitalisierung. In: Härting, R. (ed.) Industrie 4.0 und Digitalisierung – Innovative Geschäftsmodelle wagen! Tagungsband, 8. Transfertag, Aalen 2016, pp. 19–32. BOD, Norderstedt (2016)Google Scholar
  8. 8.
    Taylor, F.W.: The Principles of Scientific Management. Harper and Brothers, New York (1911)Google Scholar
  9. 9.
    Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Neumaier, P., Jozinović, P.: Industry 4.0 - potentials for creating smart products: empirical research results. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 16–27. Springer, Cham (2015). doi: 10.1007/978-3-319-19027-3_2 CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Schmidt, R., Möhring, M., Maier, S., Pietsch, J., Härting, R.: Big data as strategic enabler – insights from central european enterprises. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 50–60. Springer, Cham (2014)CrossRefGoogle Scholar
  12. 12.
    Telfer, D.J., Sharpley, R.: Tourism and Development in the Developing World. Routledge, London (2016)Google Scholar
  13. 13.
    Ralph, D., Searby, S.: Location and Personalisation Delivering Online and Mobility Services. Institution of Engineering and Technology, London (2004)CrossRefGoogle Scholar
  14. 14.
    Ighalo, M.: The changing concept of advertising and promotional technology. J. Commun. 5(1), 63–67 (2014)Google Scholar
  15. 15.
    Souto, J.E.: Business model innovation and business concept innovation as the context of incremental innovation and radical innovation. Tour. Manage. 51, 142–155 (2015)CrossRefGoogle Scholar
  16. 16.
    Cooper, D.R., Schindler, P.S., Sun, J.: Business Research Methods. McGraw-Hill, New York (2006)Google Scholar
  17. 17.
    Gretzel, U., Yuan, Y.-L., Fesenmaier, D.R.: Preparing for the new economy: advertising strategies and change in destination marketing organizations. J. Travel Res. 39, 146–156 (2000)CrossRefGoogle Scholar
  18. 18.
    Dellarocas, C.: The digitization of word of mouth: promise and challenges of online feedback mechanisms. Manage. Sci. 49(10), 1407–1424 (2003)CrossRefGoogle Scholar
  19. 19.
    Tiefenbeck, V., Goette, L., Degen, K.: Overcoming Salience Bias: How Real-Time Feedback Fosters Resource Conservation Management Science (Articles in Advance), pp. 1–19 (2016)Google Scholar
  20. 20.
    Mistliis, N., Buhalis, D., Gretzel, U.: Future eDestination marketing: perspective of an australian tourism stakeholder network. J. Travel Res. 53(6), 778–785 (2014)CrossRefGoogle Scholar
  21. 21.
    Azevedo, E.M., Weyl, E.G.: Matching markets in the digital age. Science 352(6289), 1056–1057 (2016)CrossRefGoogle Scholar
  22. 22.
    PWC: The Sharing Economy. PricewaterhouseCoopers LL (2015)Google Scholar
  23. 23.
  24. 24.
    Buhalis, D., O´Connor, P.: Information communication technology revolutionizing tourism. Tour. Recreation Res. 30(2), 7–16 (2005)CrossRefGoogle Scholar
  25. 25.
    Sundararajan, A.: Peer-to-Peer businesses and the sharing (collaborative) economy: overview, economic effects and regulatory issues. NYU Center for Urban Science and Progress (2014)Google Scholar
  26. 26.
    Harasymowicz, P.M.: Outernet technologies in tourism: a conceptual framework and applications for the travel industry. In: Egger, R., Maurer, C. (eds.) Iscontour 2015 - Tourism Research Perspectives: Proceedings of the International Student Conference in Tourism Research, pp. 97–110. BOD, Norderstedt (2015)Google Scholar
  27. 27.
    Buhalis, D., Amaranggana, A.: Smart tourism destinations. In: Xiang, Z., Tussyadiah, I. (eds.) Information and Communication Technologies in Tourism 2014, pp. 553–564. Springer, Cham (2013)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Hudson, S., Thal, K.: The impact of social media on the consumer decision process: implications for tourism marketing. J. Travel Tour. Mark. 30(1–2), 156–160 (2013)CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Book, L.A., Tanford, S., Chen, Y.S.: Understanding the impact of negative and positive traveler reviews: social influence and price anchoring effects. J. Travel Res. 55(8), 993–1007 (2016)CrossRefGoogle Scholar
  32. 32.
    Singh, S., Diamond, S.: Social Media Marketing for Dummies. Wiley, Hoboken (2012)Google Scholar
  33. 33.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM, New York (2004)Google Scholar
  34. 34.
    García-Pablos, A., Cuadros, M., Linaza, M.T.: OpeNER: open tools to perform natural language processing on accommodation reviews. In: Tussyadiah, I., Inversini, A. (eds.) Information and Communication Technologies in Tourism 2015, pp. 125–137. Springer, Cham (2015)Google Scholar
  35. 35.
    Spiller, S.A., Belogolova, L.: On consumer beliefs about quality and taste. J. Consum. Res. (2016) (in press)Google Scholar
  36. 36.
    Xiang, Z., Gretzel, U.: Role of social media in online travel information search. Tour. Manage. 31(2), 179–188 (2010)CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Huang, Y.C., Backman, K.F., Backman, S.J., Chang, L.L.: Exploring the implications of virtual reality technology in tourism marketing: an integrated research framework. Int. J. Tour. Res. 18(2), 116–128 (2016)CrossRefGoogle Scholar
  39. 39.
    Hennig-Thurau, T., Walsh, G., Schrader, U.: VHB-JOURQUAL: Ein Ranking von betriebswirtschaftlich-relevanten Zeitschriften auf der Grundlage von Expertenurteilen. Zeitschrift für betriebswirtschaftliche Forschung 56(9), 520–545 (2004)CrossRefGoogle Scholar
  40. 40.
    Kothari, C.R.: Research Methodology: Methods and Techniques. New Age International, New Delhi (2004)Google Scholar
  41. 41.
    Hewson, C.: Internet research methods: a practical guide for the social and behavioural sciences. Sage, London (2003)CrossRefGoogle Scholar
  42. 42.
    Rea, L.M., Parker, R.A.: Designing and Conducting Survey Research: A Comprehensive Guide. Wiley, San Francisco (2014)Google Scholar
  43. 43.
    Projectteam, T.L. (2017).
  44. 44.
    Wong, K.K.K.: Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Mark. Bull. 24(1), 1–32 (2013)Google Scholar
  45. 45.
    Fornell, C.: Larcker, D.F: Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18, 39–50 (1981)CrossRefGoogle Scholar
  46. 46.
    Markus, K.A.: Principles and practice of structural equation modeling by Rex B. Kline. Struct. Eqn. Model.: Multidisc. J. 19(3), 509–512 (2012)CrossRefGoogle Scholar
  47. 47.
    Chin, W.W.: The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 295(2), 295–336 (1998)Google Scholar
  48. 48.
    Ringle, C., Wende, S., Will, A. (2017).
  49. 49.
    Hubona, G.S.: Structural equation modeling (SEM) using SmartPLS software: analyzing path models using partial least squares (PLS) based SEM. In: AMCIS 2009 Proceedings 80, (2009)Google Scholar
  50. 50.
    Ringle, C.M., Sarstedt, M., Straub, D.: A critical look at the use of PLS-SEM in MIS quarterly. MIS Q. 36(1), iii–xiv (2012)Google Scholar
  51. 51.
    Ho-Dac, N.N., Carson, S.J., Moore, W.L.: The effects of positive and negative online customer reviews: do brand strength and category maturity matter? J. Mark. 77(6), 37–53 (2013)CrossRefGoogle Scholar
  52. 52.
    Werthner, H., Alzua-Sorzabal, A., Dickinger, A., Gretzel, U., Jannach, D., Neidhardt, J., Pröll, B., Ricci, F., Scaglione, M., Stangl, B., Stock, O., Zanker, M.: Future research issues in IT and tourism. Inf. Technol. Tour. 15, 1–15 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ralf-Christian Härting
    • 1
    Email author
  • Christopher Reichstein
    • 1
  • Nina Härtle
    • 2
  • Jürgen Stiefl
    • 1
  1. 1.Business AdministrationAalen University of Applied SciencesAalenGermany
  2. 2.Competence Center for Information SystemsAalen University of Applied SciencesAalenGermany

Personalised recommendations