On the Use of ISO/IEC Standards to Address Data Quality Aspects in Big Data Analytics Cloud Services

  • Jonathan RoyEmail author
  • Hebatalla Terfas
  • Witold Suryn
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 288)


With data volumes constantly growing, cloud computing provides a model for Big Data Analytics where solutions can benefit from rapid elasticity and scalability. This model changes the level of control that cloud service customers have on their data. Understanding how data is handled by cloud service providers is therefore critical in achieving data quality objectives. This paper presents an analysis on the applicability of ISO/IEC standards to Big Data Analytics cloud services, focusing on data quality. Based on results, we provide observations, identify challenges, and offer recommendations on the application of standards and future development.


Data quality Big Data Cloud computing Quality models SLA 


  1. 1.
    Assuno, M.D., et al.: Big data computing and clouds: trends and future directions. J. Parallel Distrib. Comput. 79, 3–15 (2015)CrossRefGoogle Scholar
  2. 2.
    ISO/IEC 17788: Information technology – Cloud computing – Overview and vocabulary (2014)Google Scholar
  3. 3.
    Krishna, P., Varma, K.: Cloud analytics: A path towards next generation affordable BI. White paper, Infosys (2012)Google Scholar
  4. 4.
    Krippendorff, K.: Computing Krippendorff’s alpha reliability. Departmental papers (ASC), p. 43 (2007)Google Scholar
  5. 5.
    Suryn, W.: Software Quality Engineering: A Practitioner’s Approach. Wiley, Hoboken (2013)Google Scholar
  6. 6.
    ISO/IEC 25010: Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – System and software quality models (2010)Google Scholar
  7. 7.
    ISO/IEC 25012: Software engineering – Software product Quality Requirements and Evaluation (SQuaRE) – Data quality model (2008)Google Scholar
  8. 8.
    ISO/IEC 17789: Information technology – Cloud Computing – Reference Architecture (CCRA) (2014)Google Scholar
  9. 9.
    ISO/IEC 19086-1: Information technology – Cloud computing – Service Level Agreement (SLA) framework – Part 1: Overview and concepts (2015)Google Scholar
  10. 10.
    ISO/IEC 19086-2: Information technology – Cloud computing – Service level agreement (SLA) framework – Part 2: Metric ModelGoogle Scholar
  11. 11.
    ISO/IEC 19086-3: Information technology – Cloud computing – Service level agreement (SLA) framework – Part 3: Core conformance requirementsGoogle Scholar
  12. 12.
    ISO/IEC 19086-4: Information technology – Cloud computing – Service level agreement (SLA) framework – Part 4: Security and privacyGoogle Scholar
  13. 13.
    ISO/IEC 27018: Information technology – Security techniques – Code of practice for PII protection in public clouds acting as PII processors (2014)Google Scholar
  14. 14.
    ISO/IEC 27017: Information technology – Security techniques – Code of practice for information security controls based on ISO/IEC 27002 for cloud services (2015)Google Scholar
  15. 15.
    Cheikhi, L., Abran, A.: Investigation of the relationships between the software quality models of the ISO 9126 standard: an empirical study using the Taguchi method. Softw. Qual. Prof. 14(2), 22–34 (2012)Google Scholar
  16. 16.
    ISO/IEC 29100: Information technology – Security techniques – Privacy framework (2011)Google Scholar
  17. 17.
    Villalpando, L.E.B., April, A., Abran, A.: Performance analysis model for big data applications in cloud computing. J. Cloud Comput. 3(1), 1–20 (2014)CrossRefGoogle Scholar
  18. 18.
    Bautista, L., Abran, A., April, A.: Design of a performance measurement framework for cloud computing. J. Softw. Eng. Appl. 5(2), 69–75 (2012)CrossRefGoogle Scholar
  19. 19.
    ISO/IEC 25023: Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – Measurement of system and software product quality (2014)Google Scholar
  20. 20.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  21. 21.
    Merino, J., et al.: A data quality in use model for big data. Future Gener. Comput. Syst. 63, 123–130 (2015)CrossRefGoogle Scholar
  22. 22.
    Laranjeiro, N., Soydemir, S.N., Bernardino, J.: A survey on data quality: classifying poor data. In: 2015 IEEE 21st Pacific Rim International Symposium on Dependable Computing (PRDC). IEEE (2015)Google Scholar
  23. 23.
    Kemp, R.: ISO 27018 and personal information in the cloud: first year scorecard. Comput. Law Secur. Rev. 31(4), 553–555 (2015)CrossRefGoogle Scholar
  24. 24.
    Mitchell, C.: Privacy, compliance and the cloud. In: Zhu, S.Y., Hill, R., Trovati, M. (eds.) Guide to Security Assurance for Cloud Computing, pp. 3–14. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  25. 25.
    Panth, D., Mehta, D., Shelgaonkar, R.: A survey on security mechanisms of leading cloud service providers. Int. J. Comput. Appl. 98, 24 (2014)Google Scholar
  26. 26.
    ISO/IEC 27001: Information technology – Security techniques – Information security management systems – Requirements (2013)Google Scholar
  27. 27.
    Liu, Y., et al.: A survey of security and privacy challenges in cloud computing: solutions and future directions. J. Comput. Sci. Eng. 9(3), 119–133 (2015)CrossRefGoogle Scholar
  28. 28.
    Krippendorff, K.: Content Analysis: An Introduction to its Methodology. Sage, Thousand Oaks (2004)Google Scholar
  29. 29.
    Hayes, A.F., Krippendorff, K.: Answering the call for a standard reliability measure for coding data. Commun. Methods Measures 1(1), 77–89 (2007)CrossRefGoogle Scholar
  30. 30.
    Abadi, D.J.: Data management in the cloud: limitations and opportunities. IEEE Data Eng. Bull. 32(1), 3–12 (2009)Google Scholar
  31. 31.
    Abbasi, A., Sarker, S., Chiang, R.: Big data research in information systems: toward an inclusive research agenda. J. Assoc. Inf. Syst. 17(2), 3 (2016)Google Scholar
  32. 32.
    Sun, X., et al.: A cost-effective approach to delivering analytics as a service. In: 2012 IEEE 19th International Conference on Web Services (ICWS). IEEE (2012)Google Scholar
  33. 33.
    Kambatla, K., et al.: Trends in big data analytics. J. Parallel Distrib. Comput. 74(7), 2561–2573 (2014)CrossRefGoogle Scholar
  34. 34.
    Che, D., Safran, M., Peng, Z.: From big data to big data mining: challenges, issues, and opportunities. In: Hong, B., Meng, X., Chen, L., Winiwarter, W., Song, W. (eds.) DASFAA 2013. LNCS, vol. 7827, pp. 1–15. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40270-8_1 CrossRefGoogle Scholar
  35. 35.
    Davey, J., Mansmann, F., Kohlhammer, J., Keim, D.: Visual analytics: towards intelligent interactive internet and security solutions. In: Álvarez, F., Cleary, F., Daras, P., Domingue, J., Galis, A., Garcia, A., Gavras, A., Karnourskos, S., Krco, S., Li, M.-S., Lotz, V., Müller, H., Salvadori, E., Sassen, A.-M., Schaffers, H., Stiller, B., Tselentis, G., Turkama, P., Zahariadis, T. (eds.) FIA 2012. LNCS, vol. 7281, pp. 93–104. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30241-1_9 CrossRefGoogle Scholar
  36. 36.
    Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci. 12(2), 257–285 (1988)CrossRefGoogle Scholar
  37. 37.
    Bolognini, L., Bistolfi, C.: Pseudonymization and impacts of big (personalanonymous) data processing in the transition from the directive 9546EC to the new EU general data protection regulation. Comput. Law Secur. Rev. 33, 171–181 (2017)CrossRefGoogle Scholar
  38. 38.
    Hashem, I.A.T., et al.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)CrossRefGoogle Scholar
  39. 39.
    Kumar, R.S., Saxena, A.: Data integrity proofs in cloud storage. In: 2011 Third International Conference on Communication Systems and Networks (COMSNETS 2011). IEEE (2011)Google Scholar
  40. 40.
    Khan, N., et al.: Big data: survey, technologies, opportunities, and challenges. Sci. World J. 34, 518–522 (2014)Google Scholar
  41. 41.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996)CrossRefGoogle Scholar
  42. 42.
    Tu, S., et al.: Processing analytical queries over encrypted data. Proc. VLDB Endowment 6, 289–300 (2013). VLDB EndowmentMathSciNetCrossRefGoogle Scholar
  43. 43.
    International Organization for Standardization: “Pseudonymization” – new ISO specification supports privacy protection in health informatics (2009)Google Scholar
  44. 44.
    ISO/TS 25237: Health informatics – Pseudonymization (2008)Google Scholar
  45. 45.
    ISO/IEC 15944-8: Information technology – Business operational view – Part 8: Identification of privacy protection requirements as external constraints on business transactions (2012)Google Scholar
  46. 46.
    ISO/IEC N15297: Proposal for a new work item on Privacy enhancing data de-identification techniques, June 2015Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.École de technologie supérieureMontrealCanada

Personalised recommendations