Skip to main content

Abstract

Aqueous two-phase systems (ATPS) have been studied and used for product recovery and purification from diverse biological sources. ATPS are characterized by their versatility, easy scale-up parameters, process integration capability, and relative low cost. This technique is commonly regarded as a primary recovery stage mainly due to its low selectivity. However, the use of strategies involving the modification of ATPS with affinity ligands has resulted in significant increases in recovery yields and purification folds of biological products. The aim of this chapter is to highlight current applications, trends, and challenges regarding affinity partitioning in aqueous two-phase systems for the fractionation, recovery, and purification of biological products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AL:

Affinity ligand

ATPAP:

Aqueous two-phase affinity partitioning

ATPS:

Aqueous two-phase systems

CMC:

Critical micelle concentration

DEX:

Dextran

DS:

Degree of saturation

EBA:

Expanded bed adsorption chromatography

EF:

Extractive fermentation

K p :

Partitioning coefficient

mAbs:

Monoclonal antibodies

MACS:

Magnetic-activated cell sorting

mPEG:

Monomethylether PEG

PAP:

Papain

PEG:

Polyethylene glycol

TLL:

Tie-line length

TM:

Target molecule

UCB:

Umbilical cord blood

V R :

Volume ratio

References

  • Almeida M, Passos H, Pereira M, Lima A, Coutinho J, Freire M. Ionic liquid as additives to enhance the extraction of antioxidants in aqueous two-phase systems. Sep Purif Technol. 2014;128:1–10.

    Article  CAS  Google Scholar 

  • Andrews BA, Head DM, Dunthorne P, Asenjo JA. PEG activation and ligand binding for the affinity partitioning of proteins in aqueous two-phase systems. Biotechnol Tech. 1990;4(1):49–54.

    Article  CAS  Google Scholar 

  • Antov M, Anderson L, Andersson A, Tjerneld F, Stålbrand H. Affinity partitioning of a Cellulomonas fimi β-mannanase with a mannan-binding module in galactomannan/starch aqueous two-phase system. J Chromatogr A. 2006;1123(1):53–9. doi:10.1016/j.chroma.2006.05.021.

    Article  CAS  Google Scholar 

  • Asenjo JA, Andrews BA. Challenges and trends in bioseparations. J Chem Technol Biotechnol. 2008;83(2):117–20. doi:10.1002/jctb.1851.

    Article  CAS  Google Scholar 

  • Azevedo AM, Rosa PAJ, Ferreira IF, Pisco AMMO, de Vries J, Korporaal R, Aires-Barros MR. Affinity-enhanced purification of human antibodies by aqueous two-phase extraction. Sep Purif Technol. 2009;65(1):31–9. doi:10.1016/j.seppur.2008.03.006.

    Article  CAS  Google Scholar 

  • Barbosa H, Hine AV, Brocchini S, Slate NKH, Marcos JC. Affinity partitioning of plasmid DNA with a zinc finger protein. J Chromatogr A. 2008;1206(2):105–12. doi:10.1016/j.chroma.2008.07.095.

    Article  CAS  Google Scholar 

  • Barbosa HSC, Hine AV, Brocchini S, Slater NKH, Marcos JC. Dual affinity method for plasmid DNA purification in aqueous two-phase systems. J Chromatogr A. 2010;1217(9):1429–36. doi:10.1016/j.chroma.2009.12.059.

    Article  CAS  Google Scholar 

  • Barinaga-Rementeria Ramírez I, Mebrahtu S, Jergil B. Affinity partitioning for membrane purification exploiting the biotin-NeutrAvidin interaction – model study of mixed liposomes and membranes. J Chromatogr A. 2002;971(1–2):117–27. doi:10.1016/S0021-9673(02)00841-5.

    Article  Google Scholar 

  • Benavides J, Rito-Palomares M. Bioprocess intensification: a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. J Chromatogr B. 2004;807(1):33–8. doi:10.1016/j.jchromb.2004.01.028.

    Article  CAS  Google Scholar 

  • Benavides J, Rito-Palomares M. Practical experiences from the development of aqueous two-phase processes for the recovery of high value biological products. J Chem Technol Biotechnol. 2008;83(2):133–42. doi:10.1002/jctb.1844.

    Article  CAS  Google Scholar 

  • Bonara GM, Drioli S. Reactive PEGs for protein conjugation. In: Veronese FM, editor. PEGylated protein drugs: basic science and clinical applications. Basel: Birkhäuser; 2009. p. 33–45.

    Chapter  Google Scholar 

  • Chavez-Santoscoy A, Benavides J, Vermaas W, Rito-Palomares M. Application of aqueous two-phase systems for the potential extractive fermentation of cyanobacterial products. Chem Eng Technol. 2010;33(1):177–82. doi:10.1002/ceat.200900286.

    Article  CAS  Google Scholar 

  • Cordes A, Flossdorf J, Kula MR. Affinity partitioning: development of mathematical model describing behavior of biomolecules in aqueous two-phase systems. Biotechnol Bioeng. 1987;30(4):514–20. doi:10.1002/bit.260300408.

    Article  CAS  Google Scholar 

  • Costa CLL, Badino AC. Overproduction of clavulanic acid by extractive fermentation. Electron J Biotechnol. 2015;18(3):154–60. doi:10.1016/j.ejbt.2015.03.001.

    Article  CAS  Google Scholar 

  • Cunha MT, Costa MJL, Calado CRC, Fonseca LP, Aires-Barros MR, Cabral JMS. Integration of production and aqueous two-phase systems extraction of extracellular Fusarium solani pisi cutinase fusion proteins. J Biotechnol. 2003;100(1):55–64. doi:10.1016/S0168-1656(02)00225-0.

    Article  CAS  Google Scholar 

  • De Gouveia T, Kilikian BV. Bioaffinity extraction of glucoamylase in aqueous two-phase systems using starch as free bioligand. J Chromatogr B. 2000;743(1–2):241–6. doi:10.1016/S0378-4347(00)00031-1.

    Article  Google Scholar 

  • Effio CL, Wenger L, Ötes O, Oelmeier SA, Kneusel R, Hubbuch J. Downstream processing of virus-like particles: single-stage and multi-stage aqueous two-phase extraction. J Chromatogr A. 2015;1383:35–46. doi:10.1016/j.chroma.2015.01.007.

    Article  Google Scholar 

  • Ekblad L, Kernbichler J, Jergil B. Aqueous two-phase affinity partitioning of biotinylated liposomes using neutral avidin as affinity ligand. J Chromatogr A. 1998;815(2):189–95.

    Article  CAS  Google Scholar 

  • Ekblad L, Jergil B, Gierow JP. Purification of rabbit lacrimal gland plasma membranes by aqueous two-phase affinity partitioning. J Chromatogr B. 2000;743(1–2):397–401.

    Article  CAS  Google Scholar 

  • Ferreira IF, Azevedo AM, Rosa PAJ, Aires-Barros MR. Purification of human immunoglobulin G by thermoseparating aqueous two-phase systems. J Chromatogr A. 2008;1195(1–2):94–100. doi:10.1016/j.chroma.2008.04.077.

    Article  CAS  Google Scholar 

  • Flanagan SD, Barondes SH. Affinity partitioning. J Biol Chem. 1975;250(4):1484–9.

    CAS  Google Scholar 

  • Gavasane MR, Gaikar VG. Aqueous two-phase affinity partitioning of penicillin acylase from E. coli in presence of PEG-derivatives. Enzyme Microb Technol. 2003;32(6):665–75. doi:10.1016/S0141-0229(03)00032-2.

    Article  CAS  Google Scholar 

  • Gomes Barros KV, Monteiro Souza P, Medeiros Freitas M, Ferreira Filho EX, Pessoa Junior A, Oliveira MP. PEG/NaPA aqueous two-phase systems for the purification of proteases expressed by Penicillium restrictum from Brazilian Savanna. Process Biochem. 2014;49(12):2305–12.

    Article  Google Scholar 

  • González-González M, Rito-Palomares M. Aqueous two-phase systems strategies to establish novel bioprocesses for stem cells recovery. Crit Rev Biotechnol. 2014;34(4):318–27. doi:10.3109/07388551.2013.794125.

    Article  Google Scholar 

  • González-González M, Rito-Palomares M. Application of affinity aqueous two-phase systems for the fractionation of CD133(+) stem cells from human umbilical cord blood. J Mol Recognit. 2015;28(3):142–7. doi:10.1002/jmr.2374.

    Article  Google Scholar 

  • González-González M, Willson RC, Rito-Palomares M. Elimination of contaminants from cell preparations using aqueous two-phase partitioning. Sep Purif Technol. 2016;158:103–7. doi:10.1016/j.seppur.2015.12.006.

    Article  Google Scholar 

  • Gouveia T, Kilikian B. Bioaffinity extraction of glucoamylase in aqueous two-phase systems using starch as free bioligand. J Chromatogr B. 2000;743(1–2):241–6.

    Article  Google Scholar 

  • Gutiérrez LF, Sánchez ÓJ, Cardona CA. Analysis and design of extractive fermentation processes using a novel short-cut method. Ind Eng Chem Res. 2013;52(36):12915–26. doi:10.1021/ie301297h.

    Article  Google Scholar 

  • Hamilton-Miller JMT. Penicillinacylase. Bacteriol Rev. 1966;30(4):761–71.

    CAS  Google Scholar 

  • Hernández-Mireles T, Rito-Palomares M. Improved recovery of B-phycoerythrin produced by the red microalga Porphyridium cruentum. J Chem Technol Biotechnol. 2006;81:989–96. doi:10.1002/jctb.1503.

    Article  Google Scholar 

  • Huettmann H, Berkemeyer M, Buchinger W, Jungbauer A. Preparative crystallization of a single chain antibody using an aqueous two-phase system. Biotechnol Bioeng. 2014;111(11):2192–9. doi:10.1002/bit.25287.

    Article  CAS  Google Scholar 

  • Hye-Mee P, Sang-Woo L, Woo-Jin C, Yoon-Mo K. Affinity separation by protein conjugated IgG in aqueous two-phase systems using horseradish peroxidase as a ligand carrier. J Chromatogr B. 2007;856(1–2):108–12.

    Google Scholar 

  • Johansson G. Affinity partitioning in aqueous two-phase systems. Affinity Sep. 2000;19:235–46. doi:10.1385/MB:19:3:269.

    Google Scholar 

  • Knäblein J. Modern biopharmaceuticals: design, development and optimization. Weinheim: Wiley-VCH; 2005. p. 525–38.

    Book  Google Scholar 

  • Laboureau E, Vijayalakshmi MA. Concerning the separation of mammalian cells in immobilized metal ion affinity partitioning systems: a matter of selectivity. J Mol Recognit. 1998;10(1997):262–8.

    Google Scholar 

  • Lam H, Kavoosi M, Haynes CA, Wang DIC, Blankschtein D. Affinity-enhanced protein partitioning in decyl β-D-glucopyranoside two-phase aqueous micellar systems. Biotechnol Bioeng. 2005;89(4):381–92. doi:10.1002/bit.20300.

    Article  CAS  Google Scholar 

  • Lihme A, Hansen M, Olander M, Zafirakos E. Expanded bed adsorption in the purification of biomolecules. In: Downstream processing of proteins: methods and protocols. 1st ed. Totowa: Humana Press Inc; 2000. p. 121–40.

    Chapter  Google Scholar 

  • Ling YQ, Nie HL, Su SN, Branford-White C, Zhu LM. Optimization of affinity partitioning conditions of papain in aqueous two-phase system using response surface methodology. Sep Purif Technol. 2010;73(3):343–8. doi:10.1016/j.seppur.2010.04.020.

    Article  CAS  Google Scholar 

  • Lu M, Tjerneld F. Interaction between tryptophan residues and hydrophobically modified dextran. Effect on partitioning of peptides and proteins in aqueous two-phase systems. J Chromatogr A. 1997;766(1–2):99–108.

    Article  CAS  Google Scholar 

  • Mannesse M, Cox R, Koops B, Verheij H, De Haas G, Egmond M, van der Hijden H, de Vlieg J. Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues: effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. Biochemistry. 1995;34:6400–7.

    Article  CAS  Google Scholar 

  • Oshima T, Oshima C, Baba Y. Selective extraction of histidine derivatives by metal affinity with a copper(II)-chelating ligand complex in an aqueous two-phase system. J Chromatogr B. 2015;990:73–9. doi:10.1016/j.jchromb.2015.03.023.

    Article  CAS  Google Scholar 

  • Park HM, Lee SW, Chang WJ, Koo YM. Affinity separation by protein conjugated IgG in aqueous two-phase systems using horseradish peroxidase as a ligand carrier. J Chromatogr B. 2007;856(1–2):108–12. doi:10.1016/j.jchromb.2007.05.036.

    Article  CAS  Google Scholar 

  • Persson A, Jergil B. The purification of membranes by affinity partitioning. FASEB J Off Publ Fed Am Soc Exp Biol. 1995;9(13):1304–10.

    CAS  Google Scholar 

  • Ramakrishnan V, Goveas LC, Suralikerimath N, Jampani C, Halami PM, Narayan B. Extraction and purification of lipase from Enterococcus faecium MTCC5695 by PEG/phosphate aqueous-two phase system (ATPS) and its biochemical characterization. Biocatal Agric Biotechnol. 2016;6:19–27. doi:10.1016/j.bcab.2016.02.005.

    Google Scholar 

  • Rito-Palomares M. Practical application of aqueous two-phase partition to process development for the recovery of biological products. J Chromatogr B. 2004;807(1):3–11. doi:10.1016/j.jchromb.2004.01.008.

    Article  CAS  Google Scholar 

  • Rocha MV, Di Giacomo M, Beltramino S, Loh W, Romanini D, Nerli BB. A sustainable affinity partitioning process to recover papain from Carica papaya latex using alginate as macro-ligand. Sep Purif Technol. 2016;168:168–76. doi:10.1016/j.seppur.2016.05.025.

    Article  CAS  Google Scholar 

  • Rosa PAJ, Azevedo AM, Ferreira IF, de Vries J, Korporaal R, Verhoef HJ, Aires-Barros MR. Affinity partitioning of human antibodies in aqueous two-phase systems. J Chromatogr A. 2007;1162(1 SPEC. ISS.):103–113. doi:10.1016/j.chroma.2007.03.067.

  • Ruiz-Ruiz F, Benavides J, Aguilar O, Rito-Palomares M. Aqueous two-phase affinity partitioning systems: current applications and trends. J Chromatogr A. 2012;1244:1–13. doi:10.1016/j.chroma.2012.04.077.

    Article  CAS  Google Scholar 

  • Schindler J, Nothwang HG. Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics. 2006;6(20):5409–17. doi:10.1002/pmic.200600243.

    Article  CAS  Google Scholar 

  • Schügerl K, Hubbuch J. Integrated bioprocesses. Curr Opin Microbiol. 2005;8(3):294–300. doi:10.1016/j.mib.2005.01.002.

    Article  Google Scholar 

  • Silva MFF, Fernandes-Platzgummer A, Aires-Barros MR, Azevedo AM. Integrated purification of monoclonal antibodies directly from cell culture medium with aqueous two-phase systems. Sep Purif Technol. 2014;132:330–5. doi:10.1016/j.seppur.2014.05.041.

    Article  CAS  Google Scholar 

  • Silvério SC, Madeira PP, Rodríguez O, Teixeira JA, Macedo EA. ∆G(CH2) in PEG-salt and Ucon-Salt aqueous two-phase systems. J Chem Eng Data. 2008;53:1622–5.

    Article  Google Scholar 

  • Sousa AF, Andrade PZ, Pirzgalska RM, Galhoz TM, Azevedo AM, da Silva CL, Cabral JMS. A novel method for human hematopoietic stem/progenitor cell isolation from umbilical cord blood based on immunoaffinity aqueous two-phase partitioning. Biotechnol Lett. 2011;33(12):2373–7. doi:10.1007/s10529-011-0727-0.

    Article  CAS  Google Scholar 

  • Sturesson S, Tjerneld F, Johansson G. Partition of macromolecules and cell particles in aqueous two-phase systems based on hydroxypropyl starch and poly(ethylene glycol). Biotechnol Appl Biochem. 1990;26(3):281–95. doi:10.1007/BF02921507.

    Article  CAS  Google Scholar 

  • Teotia S, Gupta MN. Purification of phospholipase D by two-phase affinity extraction. J Chromatogr A. 2004;1025(2):297–301. doi:10.1016/j.chroma.2003.10.104.

    Article  CAS  Google Scholar 

  • Teotia S, Lata R, Gupta MN. Chitosan as a macroaffinity ligand: purification of chitinases by affinity precipitation and aqueous two-phase extractions. J Chromatogr A. 2004;1052(1–2):85–91. doi:10.1016/j.chroma.2004.08.096.

    Article  CAS  Google Scholar 

  • Wang S, Xiong N, Dong XY, Sun Y. A novel nickel-chelated surfactant for affinity-based aqueous two-phase micellar extraction of histidine-rich protein. J Chromatogr A. 2013;1320:118–24.

    Article  CAS  Google Scholar 

  • Wang S, Bai S, Dong XY, Sun Y. Partitioning behavior of enhanced green fluorescent protein in nickel-chelated affinity-based aqueous two-phase micellar system and its purification from cell lysate. Sep Purif Technol. 2014;133:149–54.

    Article  CAS  Google Scholar 

  • Wu Q, Lin DQ, Yao SJ. Evaluation of poly(ethylene glycol)/hydroxypropyl starch aqueous two-phase system for immunoglobulin G extraction. J Chromatogr B. 2013;928:106–12.

    Article  CAS  Google Scholar 

  • Wu H, Yao S, Qian G, Yao T, Song H. A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids. J Chromatogr A. 2015;1418:150–7.

    Article  CAS  Google Scholar 

  • Yang Z, Mesiano AJ, Venkatasubramanian S, Gross SH, Harris JM, Russell AJ. Activity and stability of enzymes incorporated into acrylic polymers. J Am Chem Soc. 1995;117(17):4843–50. doi:10.1021/ja00122a014.

    Article  CAS  Google Scholar 

  • Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem. 1995;6(2):150–65. doi:10.1021/bc00032a002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rito-Palomares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ruiz-Ruiz, F., Benavides, J., Rito-Palomares, M. (2017). Affinity ATPS Strategies for the Selective Fractionation of Biomolecules. In: Rito-Palomares, M., Benavides, J. (eds) Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-59309-8_6

Download citation

Publish with us

Policies and ethics