Skip to main content

Practical Aspects for the Development of ATPS-Based Processes for Protein Recovery

  • Chapter
  • First Online:
Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products

Part of the book series: Food Engineering Series ((FSES))

  • 788 Accesses

Abstract

The selection and implementation of a successful aqueous two-phase system (ATPS) strategy requires an extensive amount of research to optimize the different system design parameters to obtain the desired product yields and purity. This procedure might become even more difficult depending on the complexity of the sample being processed. However, because of their characteristics, ATPS represent an interesting strategy for the recovery of different proteic products from a wide array of available sources.

The aim of this chapter is to highlight the different alternatives – from a practical point of view – in the selection of different ATPS to serve as a guide for the correct design and use of these operations for the recovery of protein molecules. In this context, our group has been working with these strategies for more than two decades. Our experience ranges from the ATPS extraction of proteins from simple sources to the extraction of these molecules from complex industrial wastes. In this chapter, we present a general and successful strategy that has served us as a first approach in implementing ATPS operations; we also present several of our most recent attempts in using ATPS in an intensive manner for the extraction of high added-value proteins from waste streams, chemical reactions, and the refolding of denatured proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATPS:

Aqueous two-phase systems

CI2:

Chymotrypsin inhibitor 2

HTS:

High-throughput screening

K P :

Partition coefficient

MW:

Molecular weight

PEG:

Polyethylene glycol

pI:

Isoelectric point

PPO-Ph:

Poly(propylene oxide)-phenyl

RNase A:

Ribonuclease A

TLL:

Tie-line length

UCON:

Ethylene oxide and propylene oxide

V R :

Volume ratio

α-Lac:

α-lactalbumin

References

  • Aguilar O, Rito-Palomares M. Processing of soybean (Glycine max) extracts in aqueous two-phase systems as a first step for the potential recovery of recombinant proteins. J Chem Technol Biotechnol. 2008;83(3):286–93.

    Article  CAS  Google Scholar 

  • Barbosa H, Slater NKH, Marcos JC. Protein quantification in the presence of poly(ethylene glycol) and dextran using the Bradford method. Anal Biochem. 2009;395(1):108–10.

    Article  CAS  Google Scholar 

  • Basri M, Ampon K, Yunus WMZW, Razak CNA, Salleh AB. Synthesis of fatty esters by polyethylene glycol-modified lipase. J Chem Technol Biotechnol. 1995;64(1):10–6.

    Article  CAS  Google Scholar 

  • Benavides J, Rito-Palomares M. Bioprocess intensification: a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. J Chromatogr B. 2004;807(1):33–8.

    Article  CAS  Google Scholar 

  • Benavides J, Rito-Palomares M. Practical experiences from the development of aqueous two-phase processes for the recovery of high value biological products. J Chem Technol Biotechnol. 2008;83(2):133–42.

    Article  CAS  Google Scholar 

  • Benavides J, Rito-Palomares M. Simplified two-stage method to B-phycoerythrin recovery from Porphyridium cruentum. J Chromatogr B. 2006;844(1):39–44.

    Article  CAS  Google Scholar 

  • Benavides J, Rito-Palomares M, Asenjo JA. 2.49 – aqueous two-phase systems. In: Moo-Young M, editor. Comprehensive biotechnology. 2nd ed. Burlington: Academic Press; 2011. p. 697–713.

    Chapter  Google Scholar 

  • Bertrand B, Martínez-Morales F, Trejo-Hernández MR. Fungal laccases: induction and production. Re Mex Ing Quím. 2013;12:473–88.

    CAS  Google Scholar 

  • Bertrand B, Mayolo-Deloisa K, González-González M, Tinoco-Valencia R, Serrano-Carreón L, Martínez-Morales F, Trejo-Hernández MR, Rito-Palomares M. Pleurotus ostreatus laccase recovery from residual compost using aqueous two-phase systems. J Chem Technol Biotechnol. 2016;91(8):2235–42.

    Article  CAS  Google Scholar 

  • Bonatti M, Karnopp P, Soares HM, Furlan SA. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem. 2004;88(3):425–8.

    Article  CAS  Google Scholar 

  • Delgado C, Malik F, Selisko B, Fisher D, Francis GE. Quantitative analysis of polyethylene glycol (PEG) in PEG-modified proteins/cytokines by aqueous two-phase systems. J Biochem Biophys Methods. 1994;29(3–4):237–50.

    Article  CAS  Google Scholar 

  • Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM. Comparative effects of salt, organic, and polymer precipitants on protein phase behavior and implications for vapor diffusion. Crys Growth Des. 2009;9(2):682–91. doi:10.1021/cg700956b.

    Article  CAS  Google Scholar 

  • Fee CJ, Van Alstine JM. PEG-proteins: reaction engineering and separation issues. Chem Eng Sci. 2006;61(3):924–39.

    Article  CAS  Google Scholar 

  • Franco TT, Andrews AT, Asenjo JA. Use of chemically modified proteins to study the effect of a single protein property on partitioning in aqueous two-phase systems: effect of surface hydrophobicity. Biotechnol Bioeng. 1996;49(3):300–8.

    Article  CAS  Google Scholar 

  • García-Arellano H, Valderrama B, Saab-Rincón G, Vazquez-Duhalt R. High temperature biocatalysis by chemically modified cytochrome C. Bioconjug Chem. 2002;13(6):1336–44.

    Article  Google Scholar 

  • Garza-Madrid M, Rito-Palomares M, Serna-Saldivar SO, Benavides J. Potential of aqueous two-phase systems constructed on flexible devices: human serum albumin as proof of concept. Process Biochem. 2010;45(7):1082–7.

    Article  CAS  Google Scholar 

  • Gong M, Aguirre AM, Bassi A. Chapter 5 – technical issues related to characterization, extraction, recovery, and purification of proteins from different waste sources A2. In: Dhillon GS, editor. Protein byproducts. London: Academic; 2016. p. 89–106.

    Chapter  Google Scholar 

  • González-González M, Mayolo-Deloisa K, Rito-Palomares M, Winkler R. Colorimetric protein quantification in aqueous two-phase systems. Process Biochem. 2011;46(1):413–7.

    Article  Google Scholar 

  • González-Valdez J, Cueto LF, Benavides J, Rito-Palomares M. Potential application of aqueous two-phase systems for the fractionation of RNase A and α-Lactalbumin from their PEGylated conjugates. J Chem Technol Biotechnol. 2011;86(1):26–33.

    Article  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Maybeck A. Global food losses and food waste – extent, causes an prevention. International Congress Save Food. Rome: Food and Agriculture Organization of the United Natios; 2011.

    Google Scholar 

  • Harris JM, Chess RB. Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.

    Article  CAS  Google Scholar 

  • Hernandez-Mireles T, Rito-Palomares M. New aqueous two-phase systems based on poly(ethylene oxide sulfide) (PEOS) and potassium phosphate for the potential recovery of proteins. J Chem Technol Biotechnol. 2006;81(6):997–1002.

    Article  CAS  Google Scholar 

  • Ibarra-Herrera CC, Torres-Acosta MA, Mendoza-Ochoa GI, Aguilar-Yañez JM, Rito-Palomares M. Recovery of major royal jelly protein 1 expressed in Pichia Pastoris in aqueous two-phase systems. J Chem Technol Biotechnol. 2014;89(7):941–7.

    Article  CAS  Google Scholar 

  • Johansson G. Partition of salts and their effects on partition of proteins in a dextran-poly(ethylene glycol)-water two-phase system. Biochim Biophys Acta Protein Struct. 1970;221(2):387–90.

    Article  CAS  Google Scholar 

  • Jwanny EW, Rashad MM, Abdu HM. Solid-state fermentation of agricultural wastes into food through Pleurotus cultivation. Appl Biochem Biotechnol. 1995;50(1):71–8.

    Article  CAS  Google Scholar 

  • Kuboi R, Morita S, Ota H, Umakoshi H. Protein refolding using stimuli-responsive polymer-modified aqueous two-phase systems. J Chromatogr B. 2000;743(1):215–23.

    Article  CAS  Google Scholar 

  • León-González G, González-Valdez J, Mayolo-Deloisa K, Rito-Palomares M. Intensified fractionation of brewery yeast waste for the recovery of invertase using aqueous two-phase systems. Biotechnol Appl Biochem. 2015;63(6):886–94.

    Article  Google Scholar 

  • Lladosa E, Silvério SC, Rodríguez O, Teixeira JA, Macedo EA. (Liquid + liquid) equilibria of polymer-salt aqueous two-phase systems for laccase partitioning: UCON 50-HB-5100 with potassium citrate and (sodium or potassium) formate at 23 °C. J Chem Thermodyn. 2012;55:166–71.

    Article  CAS  Google Scholar 

  • Lu Y, Harding SE, Turner A, Smith B, Athwal DS, Grossmann JG, Davis KG, Rowe AJ. Effect of PEGylation on the solution conformation of antibody fragments. J Pharm Sci. 2008;97(6):2062–79.

    Article  CAS  Google Scholar 

  • Makris DP. Chapter 16 – recovery and applications of enzymes from food wastes A2. In: Galanakis CM, editor. Food waste recovery. San Diego: Academic; 2015. p. 361–79.

    Chapter  Google Scholar 

  • Maruyama T, Nagasawa S, Goto M. Poly(ethylene glycol)-lipase complex that is catalytically active for alcoholysis reactions in ionic liquids. Biotechnol Lett. 2002;24(16):1341–5.

    Article  CAS  Google Scholar 

  • Mayolo-Deloisa K, Gonzalez-Valdez J, Guajardo-Flores D, Aguilar O, Benavides J, Rito-Palomares M. Current advances in the non-chromatographic fractionation and characterization of PEGylated proteins. J Chem Technol Biotechnol. 2011;86(1):18–25.

    Article  CAS  Google Scholar 

  • Mayolo-Deloisa K, Trejo-Hernandez MD, Rito-Palomares M. Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems. Process Biochem. 2009;44(4):435–9.

    Article  CAS  Google Scholar 

  • Minussi RC, Pastore GM, Durán N. Potential applications of laccase in the food industry. Trends Food Sci Technol. 2002;13(6–7):205–16.

    Article  CAS  Google Scholar 

  • Moreira S, Silvério SC, Macedo EA, Milagres AMF, Teixeira JA, Mussatto SI. Recovery of Peniophora cinerea laccase using aqueous two-phase systems composed by ethylene oxide/propylene oxide copolymer and potassium phosphate salts. J Chromatogr A. 2013;1321(0):14–20.

    Article  CAS  Google Scholar 

  • Morozova O, Shumakovich G, Gorbacheva M, Shleev S, Yaropolov A. “Blue” laccases. Biochem Mosc. 2007;72:1136–50.

    Article  CAS  Google Scholar 

  • Nagasaki Y, Yoshinaga K, Kurokawa K, Iijima M. Thermal- and dispersion-stable lipase-installed gold colloid: PEGylation of enzyme-installed gold colloid. Colloid Polym Sci. 2007;285(5):563–7.

    Article  CAS  Google Scholar 

  • Narain R. Tailor-made protein–glycopolymer bioconjugates. React Funct Polym. 2006;66(12):1589–95.

    Article  CAS  Google Scholar 

  • Ng HS, Tan CP, Chen SK, Mokhtar MN, Ariff A, Ling TC. Primary capture of cyclodextrin glycosyltransferase derived from Bacillus Cereus by aqueous two phase system. Sep Purif Technol. 2011;81(3):318–24.

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. A novel white laccase from Pleurotus ostreatus. J Biol Chem. 1997;272(50):31301–7.

    Article  CAS  Google Scholar 

  • Prinz A, Hönig J, Schüttmann I, Zorn H, Zeiner T. Separation and purification of laccases from two different fungi using aqueous two-phase extraction. Process Biochem. 2014a;49(2):335–46.

    Article  CAS  Google Scholar 

  • Prinz A, Koch K, Górak A, Zeiner T. Multi-stage laccase extraction and separation using aqueous two-phase systems: experiment and model. Process Biochem. 2014b;49(6):1020–31.

    Article  CAS  Google Scholar 

  • Rajagopalu D, Show PL, Tan YS, Muniandy S, Sabaratnam V, Ling TC. Recovery of laccase from processed Hericium erinaceus (Bull.:Fr) Pers. fruiting bodies in aqueous two-phase system. J Biosci Bioeng. 2016;122(3):301–6.

    Article  CAS  Google Scholar 

  • Reh G, Spelzini D, Tubio G, Pico G, Farruggia B. Partition features and renaturation enhancement of chymosin in aqueous two-phase systems. J Chromatogr B. 2007;860(1):98–105.

    Article  CAS  Google Scholar 

  • Reis IAO, Santos SB, Santos LA, Oliveira N, Freire MG, Pereira JFB, Ventura SPM, Coutinho JAP, Soares CMF, Lima ÁS. Increased significance of food wastes: selective recovery of added-value compounds. Food Chem. 2012;135(4):2453–61.

    Article  CAS  Google Scholar 

  • Rito-Palomares M, Middelberg APJ. Aqueous two-phase systems for the recovery of a recombinant viral coat protein from Escherichia coli. J Chem Technol Biotechnol. 2002;77(9):1025–9.

    Article  CAS  Google Scholar 

  • Rito-Palomares MA. Practical application of aqueous two-phase partition to process development for the recovery of biological products. J Chromatogr B. 2004;807(1):3–11.

    Article  CAS  Google Scholar 

  • Ruiz-Ruiz F, Benavides J, Aguilar O, Rito-Palomares M. Aqueous two-phase affinity partitioning systems: current applications and trends. J Chromatogr A. 2012;1244:1–13.

    Article  CAS  Google Scholar 

  • Schwienheer C, Prinz A, Zeiner T, Merz J. Separation of active laccases from Pleurotus sapidus culture supernatant using aqueous two-phase systems in centrifugal partition chromatography. J Chromatogr B. 2015;1002:1–7.

    Article  CAS  Google Scholar 

  • Silvério SC, Rodríguez O, Tavares APM, Teixeira JA, Macedo EA. Laccase recovery with aqueous two-phase systems: enzyme partitioning and stability. J Mol Catal B Enzym. 2013;87(0):37–43.

    Article  Google Scholar 

  • Simental-Martínez J, Rito-Palomares M, Benavides J. Potential application of aqueous two-phase systems and three-phase partitioning for the recovery of superoxide dismutase from a clarified homogenate of Kluyveromyces marxianus. Biotechnol Prog. 2014;30(6):1326–34.

    Article  Google Scholar 

  • Sridhar P. Modelling of affinity separation by batch and fixed bed adsorption – a comparative study. Chem Eng Technol. 1996;19(4):357–63.

    Article  CAS  Google Scholar 

  • Sánchez-Trasviña C, González-Valdez J, Mayolo-Deloisa K, Rito-Palomares M. Impact of aqueous two-phase system design parameters upon the in situ refolding and recovery of invertase. J Chem Technol Biotechnol. 2015;90(10):1765–72.

    Article  Google Scholar 

  • Trejo-Hernandez MR, Lopez-Munguia A, Quintero Ramirez R. Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochem. 2001;36(7):635–9.

    Article  CAS  Google Scholar 

  • Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 2001;22(5):405–17.

    Article  CAS  Google Scholar 

  • Vázquez-Villegas P, Aguilar O, Rito-Palomares M. Continuous enzyme aqueous two-phase extraction using a novel tubular mixer-settler in multi-step counter-current arrangement. Sep Purif Technol. 2015;141(0):263–8.

    Article  Google Scholar 

  • Vázquez-Villegas P, Espitia-Saloma E, Rito-Palomares M, Aguilar O. Low-abundant protein extraction from complex protein sample using a novel continuous aqueous two-phase systems device. J Sep Sci. 2013;36(2):391–9.

    Article  Google Scholar 

  • Zaslavsky B. Aqueous two-phase partitioning: physical chemistry and bioanalytical applications. New York: Marcel Dekker Inc.; 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José González-Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

González-Valdez, J., Mayolo-Deloisa, K. (2017). Practical Aspects for the Development of ATPS-Based Processes for Protein Recovery. In: Rito-Palomares, M., Benavides, J. (eds) Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-59309-8_3

Download citation

Publish with us

Policies and ethics